Attenuation of Acetone Induced Liver and Kidney Injury by Ginger and Turmeric Root Powder in Chickens

*Abd El-Rahman, A.A.1; H.A.M. Elwan2; S.M.A. El-Shafei1 and A.M.A. Abd El-Hafez2

1Dept. of Agricultural Chemistry, Fac. of Agriculture, Minia University, El-Minia, Egypt
2Dept. of Animal and Poultry Production, Fac. of Agriculture, Minia University, El-Minia, Egypt

*Corresponding author: atefnagi2000@yahoo.com

Received on: 19/12/2017 Accepted for publication on: 4/1/2018

Abstract

Ginger and turmeric are commonly used in food as spices with well-reported antioxidant activity. However, hepatoprotective and nephroprotective effects of ginger and turmeric have not been adequately studied. Therefore, the current study used chicken model with acetone induced liver and kidney injuries to evaluate the hepatoprotective and nephroprotective activities of ginger and turmeric because metabolic functions of chicken and human liver is similar. Eighty cocks were randomized into 5 experimental groups of chicks. The first one served as control. While the second group was received 350mg acetone/kg body weight (given in drinking water) per day for 30 days. The third, fourth and fifth groups were received ginger, turmeric and mix of ginger and turmeric by 1% in food respectively after treatment with acetone. Hematological parameters, liver and renal function tests, hepatic oxidative stress enzymes, as well as, histopathological examination scores were determined. Results indicated that, administration of acetone induces alteration in various hematological parameters, hepatic enzymes and hepatic oxidative stress enzymes in chickens. Dietary supplementation of ginger (GEN) and turmeric (TUR) caused a significant amelioration in some hematological parameters in acetone treated chickens. GEN and TUR treatments could reduce damage induced by acetone in alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), gamma-glutamyl transpeptidase (GGT), glucose, total protein and their fractions levels. Furthermore, acetone promoted a significant increase in urea, uric acid and creatinine levels, while treatment with GEN or TUR or GEN+TUR at the same time of treatment with acetone maintained urea and uric acid concentrations at a level similar to the control group. Interestingly, GEN, TUR and GEN+ TUR treatments significantly ameliorated effects of acetone on chickens by improving the levels of the main antioxidant enzymes (superoxide dismutase SOD, glutathione-S-transferase GST) and malondialdehyde (MDA) a reliable marker of lipid peroxidation in the cells. Histologically, acetone appeared to be hepatotoxic in chick's. Hepatocytes were sensitive to the treatment with acetone and contained large number of congested blood vesicles, cytoplasmic vacuoles, pyknotic nuclei, and lymphocytic infiltration in treated animals. Turmeric and ginger treatments improved the vast majority of hepatic changes. Our findings broadly confirmed that, the supplementation of ginger and turmeric significantly alleviated liver and kidney functions, hema-
tological parameters, as well as, hepatic oxidative stress enzymes and may have applications in the field of hepatoprotective drug development.

Introduction

Liver is the organ most frequently injured and largest organ in the body (Lucas and Ledgerwood, 1992). Hepatic injury is a common pathology in poultry and human. It caused by many factors, such as nutrition, diseases, and toxins (Wang et al., 2013). Hepatic fibrosis and cirrhosis act as a sign of liver damage and a factor of liver dysfunction (Bataller and Brenner, 2005). The treatment of hepatic fibrosis and cirrhosis should be tolerable and safe and it has not been approved yet (Schuppan and Kim, 2013).

Acetone is the organic compound with the formula \(\text{(CH}_3)_2\text{CO} \). It is a colorless, volatile, flammable liquid that is found in the environment and is produced by industries. It is quickly absorbed by ingestion, inhalation, and dermal exposure. (Armutcu et al., 2005). Acetone administration in animals has been shown to potentiate hepatotoxicity and nephrotoxicity and is related to induction of microsomal enzymes that metabolize these solvents to reactive intermediates (Morgott, 1993). The first step in acetone metabolism is the conversion of acetone into acetal by a cytochrome P450 2E1. Acetol is transformed into methylglyoxal by acetal monooxygenase which further metabolized to pyruvate by two different metabolic routes. (Kalapos, 1999).

Ginger plant (Zingiber officinale) is known as one of the important medicinal plant that are rich in phytochemicals and commonly used in food as spice. The main components of ginger are 6-gingerol, 6-shogaol, 8-gingerol and 10- gingerol (Kim et al., 2007; Schwertner and Rios 2007). These compounds are reported for their antioxidant (Maizura et al., 2011) and anticarcinogenic activities in the skin (Kim et al., 2004; Murakami et al., 2004), gastrointestinal tract (Yoshimi et al., 1992), colon (Bode, 2003; Manju and Nalini, 2005), and breast (Nagasawa et al., 2002). Ginger extract has been reported to exert antitumor and apoptotic effects on several cell lines including leukemia (Lee and Surh, 1998), gastric (Ishiguro et al., 2007), prostate (Nonn et al., 2007), ovarian (Rhode et al., 2007), and lung carcinoma (Wang et al., 2005). Ginger chemopreventive mechanisms are thought to involve the induction of carcinogen-detoxifying enzymes (Nakamura et al., 2004), antioxidant (Ahmed et al., 2000) and anti-inflammatory (Jolad et al., 2004; Grzanna et al., 2005; Lantz et al., 2007) activity.

Turmeric is a member of the ginger family (Zingiberaceae) and is a spice that comes from the root Curcuma longa. (Chainani, 2003). It has been used as a coloring agent, a spice and a food preservative, as well as, for its various medicinal properties. (Peirce, 1999; Chainani, 2003). The major active compounds in turmeric called curcuminoids. Curcuminoids contain a variety of compounds including, differuloylmethane, demethoxycurcumin, and bisdemethoxycurcumin. It gives turmeric its bright yellow color and have been extensively studied for their antioxidant, anti-inflammatory, antiviral, and anti-fun-
gal properties (Young-Joon, 1999; White and Foster, 2000). Many studies have investigated antineoplastic activities of curcumin in several types of cancer including colorectal, pancreatic, gastric, prostate, hepatic, breast, and oral cancers. (Cheng et al., 2001; Ireson et al., 2001; Aggarwal et al., 2003). Possible mechanisms for the potential antineoplastic effects induced by curcumin include: (1) inhibition of NF-κB and COX-2 (Surh et al., 2001) (2) inhibition of arachidonic acid metabolism via lipoxygenase and scavenging of free radicals generated in this pathway; (Huang et al., 1991) (3) decreased expression of inflammatory cytokines IL-1β, IL-6, and TNF-α, resulting in growth inhibition of cancer cell lines; (Cho et al., 2007) and (4) down-regulation of enzymes, such as protein kinase C, that mediate inflammation and tumor-cell proliferation. (Liu et al., 1993). In the last several years, chickens have been used and suggested as an animal model for human liver diseases (Ayala et al., 2009; Makovicky et al., 2011). Thus, the safe plant-derived natural products, which possess antifibrotic ability can be used to treat liver injury as an alternative choice. Therefore, the current study aimed to investigate the effects of ginger and turmeric against liver injury induced by acetone in chickens to evaluate the potential of therapy application.

Materials and Methods

Animal and experimental design.

This experiment was carried out at the farm of Animal and Poultry Production Department, Faculty of Agriculture, Minia University. A total of 80 cocks of Inshas (Egyptian native improved strain), 6 weeks of age, were obtained from a commercial layer farm. They were randomly allocated into 5 treatment groups, each of which included 8 replicates of 2 cocks. The birds were housed at 2 birds per cage under the same managerial conditions in a windowed poultry house. The photoperiod was 16 light: 8 dark throughout the experiment. The temperature was recorded twice daily and the mean daily temperature was 35 ± 4°C. Eighty cocks were randomized into 5 experimental groups of chicks comprising 16 birds per group. The first one served as control and received diet free of additives. The second group was provided with 350mg acetone/kg body weight (given in drinking water), third group was provided with 350mg acetone/kg body weight (given in drinking water) plus 10g ginger/kg diet, forth group was provided with 350mg acetone/kg body weight plus 10g turmeric/kg diet and fifth group was provided with 350mg acetone/kg body weight (given in drinking water) plus 10g ginger and 10g turmeric/kg diet. Feed and water were available ad libitum during the experimental period (30 days).

Medicinal plants preparation

Ginger and turmeric were provided from a private commercial market at El-Minya Governorate Egypt. Then dried at 40°C until constant weight. Dried ginger and turmeric were finally milled, sieved (1 mm mesh) and stored in a well tight polyethylene bags at room temperature 25°C.
Hematological parameters

At the end of the experiment, 5 ml blood, were taken at 07:00 – 08:00 h am from the wing vein under vacuum in clean heparinized tubes before slaughtering time, blood was tested shortly after collection for estimating blood picture. Red blood cells (RBCs) were counted according to (Campbell, 1995). Hemoglobin concentration (Hb %) and packed cells volume percentages (PCV %) were measured according to (Drew et al., 2004). Calculation of the absolute values or the erythrocyte indices, namely mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) were calculated according to (Konuk, 1975).

Biochemical analysis

At the end of experimental period (10 weeks of age) 5ml of blood samples were collected in non-heparinized tubes from one bird each replicate, then allowed to clot at room temperature. Serum was separated by centrifugation at 5000 rpm for 10 minutes and stored at -20º C until analysis of liver and kidney functions.

Liver Function Tests (LFTs)

Estimation of liver functions by measuring, the activities of liver enzymes such as ALT, AST, ALP, LDH, GGT and glucose using diagnostic kits (Vitro, Germany). Also, total protein, albumin, globulin, albumin globulin ratio were determined using commercial kits (Bio-Med, Egypt), where, alanine and aspartate aminotransferases were determined by method of (Reitman and Frankel, 1957), Gamma glutamyltransferase activity was determined by the method of Rosalki et al. (1970), alkaline phosphatase by the phenolphthalein monophosphate method (Babson, 1965). The activity of LDH was assayed by the method of Horecker and Kornberg (1948), total protein was determined by the Biuret method (Peters, 1968), albumin by the bromocresol green method (Doumas et al., 1971). All analytical testes were done using T80 UV Spectrophotometer UK.

Renal Function Tests (RFTs)

The serum was analyzed for levels of urea, uric acid and creatinine. Results were expressed as mg/dL, using commercially Bio-Med reagent kits Egypt according to (Tietz, 1986; Tietz and Saunders 1990).

Oxidative stress enzymes

The activities of superoxide dismutase (SOD), glutathione-S-transferase (GST), and malonyldialdehyde (MDA) were determined by using assay kit (BioMed chemical company, Egypt). The values of SOD were expressed as U/ml (Kakkar et al., 1984). GST activity was determined by assaying the concentration of GSH with GST assay kit, and the absorbance was scanned at 412 nm by ultraviolet spectrophotometer (Habig et al., 1974). The concentration of MDA, was estimated in blood serum following the manual of MDA assay kit (Jain et al., 1989).

Histopathological examination

Samples from liver was taken from all groups after scarification. They were fixed in 10 % neutral buffer formalin, embedded in paraffin, sectioned at 3 microns and stained with hematoxylin and eosin stain (H&E stain). Then they were
examined by light microscopy (Freida, 1990).

Statistical Analysis

The study was conducted based on a completely randomized design (CRD) with five treatments and 16 replicates. Data were analyzed by Statistical Analysis System software (SAS, Version 9.1.3, 2003) using the generalized linear model (GLM) procedure. However, significant differences among treatment means for each trait in experiment was detected using Duncan’s multiple range test (1955).

Results

Effects of GEN and TUR on hematological parameters

Interaction between cellular constituents and toxic metabolites may cause significant changes in hematological parameters. The analysis of hematological parameters can be diagnostic of harmful effects of toxic compounds on the blood constituents of an animal. As shown in Figure (1 A, B, C), the administration of acetone induces alteration in various hematological parameters in chickens. RBCs, Hb% and PCV% were significantly \((P < 0.05)\) decreased in acetone treated chickens when compared with the control group by 46.70, 41.77 and 31.71% respectively. As shown in Figure 1(A-C), no significant decreases were observed in RBCs, Hb% and PCV% parameters in ACE + GEN, ACE + TUR and ACE+GEN+TUR treatments compared to the control group. In addition, acetone exposure significantly raised MCV and MCH levels by 22.11 and 8.77 % respectively (Figure 1 D, E). These results confirmed that, the dietary supplementation of GEN and TUR caused a significant amelioration in some hematological parameters in acetone treated chickens.
Figure (1): Hematological alterations in RBCs count (A), Hb % (B), PCV% (C), MCV fl/cell (D), MCH pg/cell (E) and MCHC g/dl (F) in chickens of different groups exposed to acetone, ginger and turmeric crushed in drinking water and diet. CON control; ACE acetone; GEN ginger; TUR turmeric.

Effects of GEN and TUR on biochemical parameters
Liver function tests
Liver function tests are groups of blood tests, which are a helpful screening tool, that give information about hepatic dysfunction. In the present study, ALT, AST, ALP, LDH, GGT, glucose, total protein, albumin, globulin and albumin/globulin ratio were determined in serum of all treated groups. The change in liver function tests were recorded for the chickens of different groups and the results are presented in Table 1. The activities of ALT, AST, LDH and GGT were significantly (P < 0.05) elevated in acetone treated chickens as compared to normal chickens (Table 1). Administration of acetone depleted ALP activity, while GEN or TUR or GEN+TUR treatments main-
tained ALP activity at a level similar to the control group (Table 1). In addition, as presented in Table 1, glucose concentration (mg/dl) was significantly increased by the administration of acetone; however, treatment with GEN or TUR or GEN and TUR together restored glucose level by 16.24, 9.28 and 16.10 % respectively compared to the control values recorded in untreated chickens group. The changes of concentration of total proteins and their fractions in blood serum were recorded for the chickens of different groups and the results are presented in Table 1, which indicated that, no significant differences were observed in total protein and globulin (g/dl) levels between control and other treatments. Moreover, it was found that, the level of Albumin (g/dl) in acetone treated group was higher than that of the control chickens. These results, confirmed that, GEN and TUR treatments could reduce acetone-induced chicken liver damage and carcinogenesis.

Kidney function tests

The change in kidney function tests were recorded for the chickens of different groups and the results are presented in Figure 2. Urea, uric acid and creatinine levels (mg/dl) were determined in serum of all treated groups. As indicated in Figure (2A, B, C), acetone promoted a significant increase in urea, uric acid and creatinine levels in serum of chickens by 8.39, 54.72 and 17.65 % respectively, while treatment with GEN or TUR or GEN+TUR at the same time of treatment with acetone maintained urea and uric acid concentrations at a level similar to the control group (Figure 2A and B). Furthermore, the application of GEN or TUR or co-application of GEN with TUR at the same time of treatment with acetone were found to significantly ($P < 0.05$) increase the level of creatinine (mg/dl) by 17.65, 14.29 and 19.24 % respectively.

Table 1. Biochemical changes in liver function tests in chickens of different groups exposed to acetone, ginger and turmeric crushed in drinking water and diet.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>ALT (U/L) ± SD</th>
<th>AST (U/L) ± SD</th>
<th>ALP (U/L) ± SD</th>
<th>LDH (U/L) ± SD</th>
<th>GGT (U/L) ± SD</th>
<th>GLU (mg/dl) ± SD</th>
<th>TP (g/dl) ± SD</th>
<th>ALB (g/dl) ± SD</th>
<th>GLU (g/dl) ± SD</th>
<th>A/G ratio ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>8.00 ± 1.00</td>
<td>18.00 ± 0.25</td>
<td>103.70 ± 0.26</td>
<td>2035.66 ± 14.01</td>
<td>23.00 ± 1.00</td>
<td>244.33 ± 4.04</td>
<td>3.93 ± 0.92</td>
<td>2.10 ± 0.34</td>
<td>1.83 ± 0.58</td>
<td>1.18 ± 0.17</td>
</tr>
<tr>
<td>ACE</td>
<td>12.10** ± 0.28</td>
<td>22.33*** ± 1.52</td>
<td>76.33*** ± 1.52</td>
<td>2492.00*** ± 12.16</td>
<td>10.29*** ± 0.6</td>
<td>323.33*** ± 7.63</td>
<td>3.00 ± 0.91</td>
<td>1.43* ± 0.40</td>
<td>1.56 ± 0.51</td>
<td>0.92 ± 0.06</td>
</tr>
<tr>
<td>ACE + GEN</td>
<td>8.33 ± 1.15</td>
<td>15.00** ± 1.00</td>
<td>104.36 ± 1.41</td>
<td>2190.00*** ± 36.05</td>
<td>25.33* ± 1.52</td>
<td>204.66*** ± 5.03</td>
<td>3.63 ± 0.45</td>
<td>1.90 ± 0.40</td>
<td>1.73 ± 0.45</td>
<td>1.17 ± 0.51</td>
</tr>
<tr>
<td>ACE + TUR</td>
<td>8.00 ± 1.00</td>
<td>14.00*** ± 1.00</td>
<td>102.61 ± 1.40</td>
<td>2156.00*** ± 39.34</td>
<td>25.66* ± 2.08</td>
<td>221.66** ± 12.58</td>
<td>2.86 ± 0.15</td>
<td>1.83 ± 0.11</td>
<td>1.43 ± 0.20</td>
<td>1.30 ± 0.26</td>
</tr>
<tr>
<td>ACE+GEN+TUR</td>
<td>7.66 ± 1.52</td>
<td>16.57 ± 0.28</td>
<td>104.06 ± 0.84</td>
<td>2136.66*** ± 15.27</td>
<td>27.80* ± 1.00</td>
<td>205.00*** ± 5.00</td>
<td>2.66 ± 0.26</td>
<td>2.06 ± 0.15</td>
<td>1.20 ± 0.34</td>
<td>1.82* ± 0.55</td>
</tr>
</tbody>
</table>

Values are presented as mean ± SD, * $P < 0.05$ significant differences, ** $P < 0.01$ highly significant differences and *** $P < 0.001$ very high significant differences compared to normal group. CON control; ACE acetone; GEN ginger; TUR turmeric.
Figure (2): Biochemical alterations in urea mg/dl (A), uric acid (UA) mg/dl (B) and creatinine mg/dl in chickens of different groups exposed to acetone, ginger and turmeric crushed in drinking water and diet. CON control; ACE acetone; GEN ginger; TUR turmeric.

Effects of GEN and TUR on hepatic oxidative stress markers

Antioxidant enzymes play an important role in protection of the body against the harmful effects of free radicals and act as free radical scavengers in conditions associated with oxidative stress by preventing and repairing damages caused by reactive oxygen species (ROS). The main antioxidant enzymes including Glutathione S-transferase (GST) and superoxide dismutase (SOD), were determined in the current study. Moreover, malondialdehyde (MDA) was also determined as a reliable marker of lipid peroxidation in the cells. As indicated in Figure 3A, no significant alterations were noticed between ACE + GEN, ACE + TUR and untreated chickens in GST (IU/L) activity. Furthermore, adding up of GEN with TUR significantly ($P < 0.05$) increased the GST (IU/L) activity by 12.5%. In Figure 3B, it can be also seen that; the oral administration of acetone was sharply decreased SOD (IU/L) activity by 43.42% compared to untreated normal chickens, whereas the application of GEN or TUR or GEN and TUR together significantly improved SOD activity by 17.77, 18.20 and 26.16% respectively as compared to normal chickens. In addition, MDA (mmol/ml) level as a marker of lipid peroxidation was increased in the serum of acetone treated chickens by 21.74% compared with those normal chickens ($P < 0.05$) (Figure 3C). Interestingly, GEN, TUR and GEN+ TUR treatments significantly ameliorated effects of acetone on chickens by decreasing the level of MDA.
Histopathological observations

The histopathology of liver sections of the control group is shown in Figure 4A which has no pathological changes, showed normal hepatic cells with well-preserved cytoplasm, prominent nucleus, nucleolus, central vein and compact arrangement of hepatocytes separated by widened sinusoids. As shown in Figure 4B, treatment with acetone caused severe liver damage including pyknotic nuclei (pin arrows), congested blood vesicles (bold arrow), vacuolation (zigzag arrows), loosening connective tissues (small arrows), white blood cells infiltrations with fibroblast cells. These histopathological changes were reduced in the liver of chicks treated with turmeric, ginger and its mixture respectively. Normal hepatic structure with lesser extent of hepatic changes compared to acetone group were observed. Tissue damage, congestion of central vein, cytoplasmic vacuolation and loosening connective tissues were of less extent than the acetone group (Figure 4C, D and E).
Figure (4): Histopathological examination of chick's livers control (A) and treated with acetone (B), acetone + turmeric (C), acetone + ginger (D) and acetone + turmeric + ginger (E).

(A): Control chick's liver showing no pathological changes, (B): Section of intoxicated chick's liver with acetone showing pyknotic nuclei (pin arrows), congested blood vessels (bold arrow), vacuolation (zigzag arrows), loosing connective tissues (small arrows), (C): Section of acetone + turmeric treated chick's showing improvement in the liver tissue. Arrows indicate normal hepatic cells with lesser extent of cytoplasmic vacuolation (zigzag arrows), (D): Section of acetone + ginger treated chick's showing improvement in the liver tissue. Arrows indicate normal hepatic cells with lesser extent of cytoplasmic vacuolation (zigzag arrow), congestion of central vein (bold arrow), loosing connective tissues (small arrow).
Discussion

The first aim of the present study was to examine that ginger and turmeric root powder could provide attenuation effects on acetone-induced blood disorders in chickens. Administration of the toxic chemicals in animals lead to changes in hematological parameters that are indicative of hematological disorders. The alterations in hematological parameters are used to evaluate the effects of toxic condition or stress caused by environmental, nutritional or other factors (Ajagbonna et al., 1999). Hematological parameters including RBCs, Hb%, PCV%, MCV, MCH and MCHC are considered good indicators of the physiological status of animals and valuable in monitoring toxicity (Khan and Zafar, 2005).

The data presented in Figure 1 demonstrated that, administration of acetone in drinking water caused a decrease in the RBCs, Hb% and PCV (Figure 1 A, B, C) and an elevation in MCV and MCH (Figure 1 D, E). However, these deleterious effects were not observed in chickens treated with GEN and TUR indicating that the ginger and turmeric which belong to the same plant family (Zingiberaceae) alleviated the disruption caused by acetone. Response of chickens due to dietary ginger or turmeric supplementation on hematological parameters has been evaluated in several studies. Previous study has indicated a significant improvement in both erythrocyte and leukocyte was observed when the diets of broiler chicken was supplemented with 10.0 g/kg turmeric meal (Al-Sultan, 2003). Other study suggested that these improvements were attributed to the presence of curcumin in turmeric rhizome (Antony et al. 1999).

To verify whether ginger and turmeric root powder can directly improve the liver function tests, ALT, AST, ALP, LDH, GGT, glucose, total protein, albumin, globulin and albumin/globulin ratio were determined in serum of acetone treated chickens. GGT, ALT and AST are the main widely used as hepatocellular carcinoma (HCC) tumor marker. GGT is a liver enzyme that metabolizes extracellular glutathione and involves in the transport of amino acids and peptides into cells. It is mainly found in the liver cells and the main function of GGT is to enhance cysteine levels to maintain intracellular homeostasis of oxidative stress in the body (Wu et al., 2016). GGT expression is often significantly increased in human tumors and its activity has been mostly regarded as a factor in reconstitution of cellular antioxidant/antitoxic defenses (Pompella et al., 2006).

Most increases in serum ALT or AST levels are caused by liver damage or disease. These increases are due to additional ALT and AST are released into blood stream (Kim et al., 2008). The Lactic dehydrogenase (LDH) enzyme is found in virtually all animal and human tissues. It plays an important role in cellular respiration and metabolism of glucose by catalyzing the reduction of free pyruvate to lactate and the conversion of lactate to pyruvate in glycolysis and gluconeogenesis respectively (Shamoon and Polus, 2010). Elevated LDH serum expression is often caused by heart, kidney and liver disease as well as in many different types of cancer (Faloppi et al., 2016).
As expected, in the present study significant increasing in the serum concentrations of ALT, AST, LDH and GGT were observed (Table 1) by acetone stimulation, and supplementation of ginger and turmeric root powder alleviated these abnormal increments. Recent studies indicate that, turmeric and ginger have a hepatoprotective characteristic (Bardi et al., 2013; Salama et al., 2013). The hepatoprotective activities are mainly as result of their antioxidant properties. Other studies on liver injury showed that, curcumin and ginger provide hepatoprotective effects against CCl₄-induced acute and subacute liver damage (Patrick-Iwuanyanwu et al., 2007; Gumaa et al., 2017). Collectively, these studies suggest the supplementation of ginger and turmeric root powder could be a potential therapeutic strategy for hepatotoxicity.

Serum ALP concentration is usually measured to reveal changes in its activity. Elevated alkaline phosphatase is most commonly caused by many common diseases, including extrahepatic bile obstruction, intrahepatic cholestasis, infiltrative liver disease, and hepatitis. Little attention has been focused on clinical conditions associated with low or decreased ALP activity in patients (Lum, 1995). The present data suggest that administration of acetone caused decrease in ALP activity, whereas, the supplementation of ginger and turmeric root powder prevented acetone induced ALP depletion (Table 1).

Liver plays a unique role in carbohydrate metabolism. It is responsible for the balance of blood glucose levels by glycogenogenesis and glycogenolysis (Barthel and Schmoll, 2003). The metabolic homeostasis of glucose is impaired in the presence of hepatic disease and as a result of disorders including insulin resistance, glucose intolerance and diabetes (Nielsen et al., 2005; Picardi et al., 2006). The data in the current study demonstrate that acetone induces a significant increase in serum glucose level as a result of liver disorders and the supplementation of ginger and turmeric root powder-maintained glucose level similar to the control group (Table 1). The other liver injury biomarkers include total proteins and their fractions were determined in the present study. To differentiate between a normal and damaged liver function, estimation of total proteins is helpful as the majority of plasma proteins like albumins and globulins are produced in the liver (Thapa and Walia, 2007). Many measurable liver functions are reflected in the albumin concentration, total protein and others which are the markers of liver biosynthetic capacity. Albumin is the main protein in blood which produced by the liver. Serum albumin level can be used as a supplementary test for hepatic biosynthetic functions (Singh et al., 2011). Hepatotoxicity leads to decrease in albumin biosynthesis. In this respect, our data revealed that, acetone is the only group leads to depletion in serum albumin level (Table 1) as a result of hepatocellular injury whereas, ginger and turmeric supplementation maintained serum albumin concentration at a level similar to the control group. It is confirmed that, they have a protec-
tive effect against hepatotoxicity caused by acetone treatment.

In addition, the nephrotoxicity of acetone has also been investigated in our study. Blood urea, creatinine and uric acid as markers of kidney functions were evaluated. Urea is a major end product of amino acid catabolism, produced by liver. It is filtered out of blood by glomeruli in kidneys (Corbett, 2008). It is useful to diagnosis of acute renal failure and an increase in blood urea may be associated with kidney disease (Mitchell and Kline, 2006). Uric acid is an end oxidation product of purine metabolism (Johnson et al., 2011). It is renally excreted and elevated serum uric acid levels may be associated with reduced glomerular filtration rate. It plays an important role in the pathophysiology of possibly in chronic and acute kidney disease (Giordano et al., 2015). Creatinine is a small tripeptide and muscle waste product (Levey et al., 1999). A high serum level of creatinine indicates that the kidneys may not be working properly. It is usually a more accurate marker of kidney function than urea (Jafar et al., 2005). Data in our study indicated that, the acetone administration caused an elevation in serum urea, uric acid and creatinine as a result of glomerular injury. The observed elevation in serum urea, uric acid and creatinine caused by acetone suggest that renal function impairment which might result from intrinsic renal lesions, degeneration of the apical microvilli of renal tubules, congestion or distention of renal tubules or glomeruli caused by this organic solvent (ATSDR, 2011). The deleterious effects of acetone on kidney functions were not observed in chickens treated with GEN or TUR or GEN+TUR at the same time of treatment with acetone indicating that the ginger and turmeric supplementation protected the tissue against congestion or distention of renal tubules and cellular disruption caused by acetone.

In order to examine the effect of ginger and turmeric root powder to alleviate the oxidative stress caused by acetone administration, GST and SOD antioxidant enzyme activities were determined as reliable marker of oxidative stress (Noeman et al., 2011). In addition, MDA level was determined as an end product of lipid peroxidation and also reliable marker of oxidative stress (Onlom et al., 2017). Our results clearly demonstrated that, the ginger and turmeric root powder counteracted acetone induced oxidative stress and ameliorated its effects on antioxidant enzyme activities. In addition, hepatic MDA levels were excellently reduced by ginger and turmeric administration compared to acetone treated group. The observed improvement in biochemical and hematological parameters determined in our study by ginger and turmeric administration suggest that ginger and turmeric have a hepatoprotective characteristic. The chemopreventive effects of ginger and turmeric are not well understood but are mainly a result of their antioxidant properties (Kawamori et al., 1999, Banerjee et al., 2002), up-regulation of carcinogen-detoxifying enzymes (Nakamura et al., 2004), anti-inflammatory (Limtrakul et al., 1997, Lantz et al., 2007) activity as well as their ability to decrease the...
formation of pro-inflammatory cytokines.

Histologically, treatment chicks with acetone in the current study, may induce hepatic necrosis or apoptosis which appeared by the presence of irreversible condensation of chromatin in nuclei of some hepatocytes (pyknosis). Cytoplasmic vacuolation was also observed in some hepatocytes, which strongly suggest the presence of ultrastructural changes include deposition of fat droplets (Watanabe and Yanagita, 1983), excess accumulation of glycogen (Nayak et al., 1996), mitochondrial changes (Vickers, 2009), and multiple vacuoles with poor cytoplasmic architecture (Adewole and Ojewole, 2007). Our findings concerning increasing values of AST, ALT and LDH, as well as appearance of necrosis caused by acetone treatment are in agreement with those of other authors who showed that, the appearance of necrosis with vacuolation seemed to be associated with increased levels of hepatic biomarkers such as ALT, AST and LDH (Shimada et al., 2015). As far as we know, this is the first study to show a cell necrosis and vacuolization induced by acetone toxicity. Furthermore, the results of the present work showed that, addition of turmeric, ginger and its mixture respectively, alleviate the effects of acetone and showed normal hepatic structure with lesser extent of hepatic changes compared to acetone group. This effect may be due to containing turmeric and ginger a variety of compounds which have antioxidant, anti-inflammatory and anticarcinogenic activities (Manju and Nalini, 2005, Maizura et al., 2011).

In conclusion, this study demonstrated the effects of ginger and turmeric root powder against liver injury induced by acetone in chickens. Ginger and turmeric strongly enhanced the protection of liver against injury induced by acetone. This was observed by non-significant alterations which were recorded between ACE + GEN, ACE + TUR, ACE + GEN + TUR groups and untreated chickens in some hematological and biochemical parameters which estimated in our study. These findings suggest that ginger and turmeric root powder are a potential candidate for hepatotoxic therapeutics. Further studies are necessary to elucidate the mechanism of action of ginger and turmeric root powder as a hepatoprotective agents.

References

given extract of Calatropis Procera Sokoto J. Vet. Sci. 1:36–42.

Ireson C., Orr S., Jones D.J. (2001). Characterization of metabolites of the chemopreventive agent curcu-

Manju V., Nalini N. (2005). Chemopreventive efficacy of ginger, a naturally occurring anticarcinogen during the initiation, post-initiation stages of 1,2 dimethylhydrazine-

Watanabe M. and Yanagita T. (1983). Toxicological studies on the influ-

تقليل تأثير الأسيتون المحفو لحدوث ضرر في الكبد والكلي بواسطة مسحوق جذور الزنجبيل والكركم في الناجح

عاطف عبد المنذر عبد الرحمن، حماد عبد الحميد مهنى علوان، سامي محمد عبد العزيز الشافعي، و
"اسم م. ع. م. ع."

قسم الكيمياء الزراعية - كلية الزراعة - جامعة المنية- مصر

قسم الإنتاج الحيواني والدواجن - كلية الزراعة - جامعة المنية- مصر

الملخص

عاء ما يستخدم الزنجبيل والكركم في الطعام كمكمل بالاضافة إلى أنه يحمل نشاط مضاد للأكسدة. وبالرغم من ذلك فإن التأثير الوقائي للكركم والزنجبيل لم يتم دراستهم بشكل كاف. لذلك فإن الدراسة الحالية قد استخدمت الدجاج كنموذج لدراسة تأثير الأسيتون كمادة محفزة لحدوث اضرار في الكبد والكلي وذلك بتحديد تأثير الوقائي للكركم والزنجبيل لكل من الزنجبيل والكركم حيث أن الوعان التمثيلية لكل من كبد الدجاج والاسنان مماثلة. ولقد تم تقسيم 60 دجاجة على خمسة مجموعات استخدمت ألتي:

- المجموعة إضافة الاسيتون بناء على وزن الدم (في ملعب إستيون/كجم وزن الجسم (أعلى لها في ملعب الشميرة) يوميا لمدة 30 يوما. أما المجموعات الثلاثة والأربعة والخامسة فقد عموت بكل من الزنجبيل والكركم بالإضافة إلى خليط منهم بنسبة 1% على التوالي عقب المعاملة بالأستيتون. ومن خلال هذه الدراسة فقد تم تقديم بعض القياسات الفيزيولوجية وظائف الكبد والكلي النشاط الاضافي للإجهاد الأوكسيدي الكودي بالإضافة إلى الفحص النسيجي للخلايا الكبدية. وقد أظهرت النتائج ان معاملة الدجاج بالأستيتون أدت إلى حدوث بعض التغيرات في العديد من القياسات الفيزيولوجية وظائف الكبدية أو الازمات الأمراضية في الدجاج، إلا أن الدعم الغذائي الزنجبيلي والكركمية أدى إلى حدوث تحسين ملحوظ في بعض القياسات الفيزيولوجية للدجاج مع معالجة الأسيتون. كذلك، انخفض غير المعاملة بالزنجبيل ALT, AST, GGT و الكركم يمكن أن يكون نتائج هذه الدراسات من المعاملة بالأسيتون في مستويات سكر الجلوكوز في الدم بالإضافة إلى المعاملة التجريبي الكلي من البروتينات ALP, LDH, GGT وميشنحة.

عاء على ذلك فإن الأسيتون يؤدي إلى حدوث زيادة ملحوظة في مستويات البوريا حامض البيريدك بالإضافة إلى الكريتاتينين بينما المعاملة بالزنجبيل والكركم أو الخلط منهم في نفس وقت المعاملة حافظ على نسبة البيريدك وحمض البيريدك عند مستويات مشابهة من ذلك الموجود في المجموعة الضوابطة. ومن المثير للإهتمام أن معاملة الدجاج مع معالجة الأسيتون أدت إلى تخفيف الاضرار الناتجة في الدجاج وذلك بتحسين مستويات الشذرات الأسيتونية المتخصصة للإجهاد الأوكسيدي (MDA, SOD, GST) بالإضافة إلى الدجاج.

بمثابة المضاد المgetMockBuilderًأكسدة الدهون في الخلايا. ومن الناحية التحليلية، فقد أظهر الأسيتون سبيكة كودي في الدجاج حيث أن الخلايا الكبدية كانت حساسة للإجهاد الأسيتون واحتشى على عدد كبير من خيارات الدم البتظنة، والعديد من الفجوات السيتوبرامية، والأحماض في نمو الخلايا بالإضافة إلى حدوث تسقى في الخلايا الليفية. إلا أن معاملة بالكركم والزنجبيل قد حسنت الغلاف النسيجي من هذه التغييرات الكبدية. ويشكل عام هذا التحول الذي توصلنا بها يكاد على نطاق واسع أن الدعم الغذائي بالزنجبيل والكركم أدت إلى تخفيف الاضرار الحادة في وظائف الكبد والكلي، القياسات الفيزيولوجية بالإضافة إلى انزيمات الأجهد الأوكسيدي الكودي، ومن الممكن أن يكون له تطبيقات في مجال تطوير الأدوية الوقائية للكد.