Use of Some Organic and Bio Fertilizers as a Partial Substitution of the Mineral Nitrogen Fertilization for Corn 1-The Effect on Corn Yield and N, P and K uptake.

Abdelzaher, M.A.²; Z.I. Ibrahim¹; F.A. Khalil² and W.S. Mohamed¹

¹Soil and water Department., Fac. of Agric., Minia University, Egypt. ²Soil, Water and Environment Res. Ins. Agric. Res. Center, Giza, Egypt. **Received on:** 19/10/2016 **Accepted for publication on:** 1/11/2016

Abstract

A field experiment was conducted at Shandweel Agricultural Research Stations, Sohag Governorate, during each of the two successive summer seasons 2014 and 2015 to study the effects of organic and bio fertilizers as a partial substitution of the mineral nitrogen fertilization and their effects on yield, (N,P and K uptake) and protein content in grains for the TWC 310 maize cultivar. The used soil was clay loam in texture, having pH 7.7, O.M 1.27%. The experiments were laid down in split-split plot design with four replications. The experiments included 27 treatments, which were the combination of 3 nitrogen levels (60,90 and 120 kg N fed⁻¹), 3 treatments of organic and bio fertilizer (without organic and bio fertilizer, 10m³ FYM fed⁻¹ and microbein inoculume) and 3 treatments of humic acid (water spraying, humic and fulvic acid spraying) at a rate (2% v/v) at two times (30 and 45 days from planting). The obtained results revealed that a significant and gradual increase in grain yield, N, P and K uptake and protein content were found by increasing nitrogen fertilizer levels from 60 to 120 kg N fed⁻¹ during the two seasons of the study. The results also revealed significant improvements in grain yield and N, P and K uptake and protein content due to the applications of farm vard manure or (Microbein) compared with the control (without organic and bio fertilizers) in both seasons. The effect of spraving humic acid was significant for all studied traits. The interaction effects of all factors under study were significant for all studied traits. The highest values in grain yield were (29.078 and 28.735 ard. fed⁻¹) and were obtained by adding 90 kg N fed⁻¹. combined with 10m3 FYM fed⁻¹. and sprayed with F.A during 2014 and 2015 seasons respectively. It can be recommended that the possibility to minimize the application of chemical fertilizer and in the same time increasing maize production in quantity and quality was true by adding organic and/or bio fertilizers.

Keywords: Nitrogen fertilizer, FYM Bio-fertilizer, Humic acids, Nutrient content, corn

Introduction

Corn (*Zea mays* L.) is one of the main cultivated cereals all around the world. It is one of the important crops principally during the summer season in Egypt(1,724,000 faddan for white maize and 415,245 faddan for yellow maize one faddan =0.42ha). Egypt

produces about 5.8 million tons of white corn and 1.3 million tons of yellow corn annually (Haggag 2013). Maize grain is used for human consumption, animal and poultry and industrial purposes. The total production is insufficient to meet local consumption due to low productivity per area unit and limited cultivated area. During the last few decades the food demand sharply increased across the world, therefore, there are a large extensive agricultural lands has been shifted to intensive agriculture, it put the natural resources, including the land, under a high pressure. Many kinds of soils became incapable of supplying the high yield by their micronutrient requirements. With intensive cropping the best natively fertile soils, stress eventually occurs in the proper procedures are not followed to replace crop- removed nutrient elements and to maintain the proper nutrient element balance for optimum plant growth (Jones 2001). For many vears agricultural research has aimed at improving crop yields, while placing little importance on the quality of the products or environmental protection. More recently, the environmental impact of production methods, high production costs and the need to reduce chemical substances in the soil have become important agricultural objectives (Gastal and Limaire 2002). To promote efficient plant absorption of nutrients and reduce environmental pollution, a number of chemical molecules have been studied (Ertani et al., 2009 and 2011). Nitrogen contributes 1-4% of dry matter production of the plants., Nitrogen deficiency causes stunted growth, delayed maturity and pale green or yellow color (chlorosis) of the leaves (Haque et al., 2001). Increasing grain yield due to application of nitrogen fertilizer inorganic combined with FYM over the control may be due to the effect of FYM in improving the physical and chemical properties of the soil. As well as, organic manures

plays a direct role in plant growth as a source of all necessary macro and micronutrients in available forms during mineralization, (Abou El-Magd et al., 2006). Inoculation with Bacillus megaterium increased significantly nutrient content (N,P and K) in maize compared with control. (Hauka. 2000). N content in maize plant significantly increased by the synergistic effect mainly between both N-fixing bacteria and P-solubilizers microorganism, (El-Sawah, 2000). These compounds are defined as bio stimulants such as humic substances (HS). Humic acid is one of the major components of humic substances. Humic matter is formed through the chemical and biological humification of plant and animal matter and through the biological activities of microorganisms (Anonymous 2010). Humic substances have an important ability to be chelating -agents, they are in fact excellent in this role as strong enough to protect the micronutrients from leaching, but weak enough to release micronutrients to plants when required. The cationic micronutrients are most likely deficient on calcareous soils or soil high in organic matter where strong chelating decreases availability (Tan 1998 and Garcia et al. 2004). Yield and yield components of maize were maximum when applying 3 kg HA ha-1 and 160 kg N ha-1, (Kamran et al., 2014).

Materials and Methods

Field experiments were conducted at Shandweel Agricultural Research Stations, Sohag Governorate, during two successive summer seasons (2014 and 2015) to study the effect of organic and bio fertilizer as a partial substitution of the mineral nitrogen fertilization and their effects on yield and N,P and K uptake and protein content for the TWC 310 maize cultivar. The experimental design was split-split plot with four replication. Nitrogen levels were assigned to the main plots, applications of farm yard manure (FYM) and biofertilizer to the sub-plots and applications of Humic acid to the sub-subplots.

The treatments were as follows:

- A- Main plots: Nitrogen fertilizer levels.
- a1- 60 Kg N fed.⁻¹ (Control).
- a2- 90 Kg N fed.⁻¹.
- a3- 120 Kg N fed.⁻¹.
- B- Sub-plots: organic and biofertilizers.
- b1-Without organic and biofertilizers.
- b2-Adding 10m³ FYM fed.⁻¹.
- b3-Adding bio-fertilizer (Microbein).
- C- Sub-sub-plots: Foliar application of Humic & Fulvic acid.
- c1- Water spraying.
- c2- Humic acid spraying.
- c3- Fulvic acid spraying.

The preceded crop in the farm was wheat in both seasons. Each experimental plot consisted of five rows, three meters long and 70 cm apart. Planting was done in hills 30 cm apart, seeding rate was 15 kg/fed.. TWC 310 maize cultivar was planted on June 1st in 2014 and on June 3rd in 2015 seasons. Thinning was done before first irrigation (21 days from planting) to one plant/hill Which gave population nearly of 20.000 а plants/fed. The plants were harvested at maturity (120 days after planting in both seasons). Nitrogen fertilizer was applied in the form of urea (46.5% N) in two equal doses, the first dose was added before the first irrigation and other one was before the second irrigation. potassium fertilizer was added in the form of potassium sulphate (48% K₂O) to all plots of the experiment at the rate of 24 kg K₂O/fed. (50kg potassium sulphate) at planting. Super-phosphate $(15 \% P_2O_5)$ was added at the rate of 15 kg P_2O_5 /fed. (100kg super-phosphate) during land preparation. Farm vard manure (FYM) was added at the rate of 10m³ FYM/fed. during land preparation. Bio-fertilizer (Microbein) was added as a soil application before the first irrigation. Foliar application of Humic acid (H.A) and Fulvic acid (F.A) were sprayed at a rate 4 liters/200 liters water per fed. in two times at 30 and 45 days after planting.

Soil characterization for the two experimental sites during the seasons 2014 and 2015 are listed in Table 1. The elements composition and chemical properties of the applied farm yard manure (FYM) during the seasons 2014 and 2015 are listed in Table 2,

Table 1. Some physical and chemical properties of the experimental soils.

Properties	Values					
Toperties	2014	2015				
Physical analysis		·				
Particle size distribution (%):						
Sand	24.00	22.40				
Silt	38.20	39.50				
Clay	37.80	38.10				
Textural class:	clay loam	clay loam				
Chemical analysis						
Organic matter (%)	1.22	1.32				
pH (1:2.5soil water susp.)	7.55	7.76				
EC (dSm ⁻¹ , soil paste ext.)	0.87	0.92				
CaCo ₃ (%)	1.80	1.75				
Soluble ions (meq/100g):		·				
Ca^{2+}	4.53	6.53				
Mg ²⁺	3.17	2.38				
Na^+	2.33	2.88				
K ⁺	0.22	0.25				
HCO ₃	3.83	3.63				
Cl	1.67	2.85				
SO ₄ ²⁻	4.75	5.56				
Available macronutrients (mgkg ⁻¹):						
Ν	17.20	18.70				
P	10.00	9.50				
К	178	170				

Table 2. Chemical properties of the applied farm yard manure (FYM) during theseasons 2014 and 2015.

					prop	erties				
Seasons	рН	E.C dsm ⁻¹	N (%)	P (%)	K (%)	O.M (%)	0.C (%)	C/N ratue	weight of 1 m ³ (kg)	moisture content (%)
(FYM) 2014	7.35	6.19	0.78	0.39	2.95	25.87	13.44	17.23	644	10.60
(FYM) 2015	7.13	6.38	0.67	0.50	2.90	23.99	12.48	18.63	610	8.35
pH and EC of t	he FYM	were mea	asured in	1:5 extra	ct.					

The following characters were studied:

A- Yield: Grain yield (ardab/fed.) at 15.5% moisture content.

B- Chemical composition:

1-N, P and K uptake in grains.

2-Protein content in grains.

Nutrients determination:

Plant sample was taken at the harvest time from the grains of each plot. The grains samples were ground and kept for chemical analysis. Plant materials were digested using a mixture of concentrated H_2SO_4 and H_2O_2 30% (Jackson, 1973). Total nitrogen determined by using micro-Kjeldahl

methody, as described by A.O.A.C (1980), Phosphorus concentration in grains was determined colorimetric method using chlorostannousphospholybdic acid using a spectrophotometer according to Jackson (1958). Potassium concentration in grains was determined using a flamphotometer according to Jackson (1973). The nutrient uptake was computed by multiplying the respective grains yield with nutrient contents and expressed as Kg/fed. Crude protein content was calculated by multiplying the value of nitrogen % by 5.9 according to Drk (1984).

Statistical Analysis

The obtained data were subjected to proper statistical analysis of variance and (L.S.D.) test was used to compare the treatment means according to the procedures outlined by Sendecor and Cochran (1980).

Results and Discussion

As a general, the effect of the main factor (Nitrogen fertilization) on grain yield, N uptake, P uptake, K up-

take and protein content was highly significant in both season. Similarly sub factor (Organic and bio fertilizers) was highly significant except for Potassium uptake in 2015 season which was just significant. The effect sub-sub factor (Humic and Fulvic acid spraying) was highly significant for all studied traits except Potassium uptake in 2014 season which was just significant., Table (3).

Tab	Table 3. Analysis of variance											
Key	6 V	Degrees of	Grain yield	N. uptake	P. up- take	K. up- take	Protein content	Grain yield	N. uptake	P. up- take	K. up- take	Protein content
Value	Source.v	Free-					Mean	Square				
		dom		2	2014 season				2015 season			
1	Replica- tion	3	0.071	0.070	0.033	0.319	0.024	0.147	0.354	0.067	0.313	0.013
2	Factor A	2	365.995**	4739.917**	190.947**	267.204**	22.188**	273.037**	4571.742**	190.062**	220.637**	29.704**
-3	Error	6	0.086	1.633	0.023	0.120	0.041	0.125	2.936	0.065	0.211	0.075
4	Factor B	2	24.506**	417.483**	16.866**	7.021**	2.177**	9.064**	241.945**	8.833**	1.051*	1.916**
6	AB	4	1.516**	20.085**	0.539**	2.053**	0.690**	1.613**	40.732**	3.436**	1.351**	0.878^{**}
-7	Error	18	0.136	2.308	0.057	0.049	0.041	0.158	2.521	0.091	0.264	0.031
8	Factor C	2	4.461**	176.731**	4.212**	0.539*	2.331**	10.484**	218.084**	13.640**	1.782**	1.564**
10	AC	4	0.812**	9.743**	1.534**	0.707**	0.457**	0.924**	5.680 ^{n.s}	3.422**	3.246**	0.167**
12	BC	4	0.153 ^{n.s}	4.334 ^{n.s}	0.959**	1.542**	0.184**	0.590*	9.779**	1.398**	0.791**	0.211**
14	ABC	8	0.694**	18.190**	1.500**	1.238**	0.233**	0.699**	20.490**	1.079**	0.818**	0.333**
-15	Error	54	0.158	2.521	0.099	0.165	0.039	0.179	2.346	0.099	0.146	0.039
	Total	107										

**, * and ns mean significant at 1% and 5% probability levels and not significant, respectively.

The interaction effect of factor A (Nitrogen fertilization) and factor B (Organic and bio fertilizers) was highly significant for all studied traits in both seasons. The interaction effect of factor A (Nitrogen fertilization) and factor C (Humic and Fulvic acid spraying) was highly significant except for Nitrogen uptake in 2015 season which was not significant. The interaction effect of factor B (Organic and bio fertilizers) and factor C (Humic and Fulvic acid spraying) was highly significant except for grain yield in 2015 season which was just significant. Also that grain yield and Nitrogen uptake in 2014 season which were not significant. The interaction effect of all the factor under study was highly significant for all studied traits during the two seasons under study., Table (3).

 Table 4. Effect of some organic and bio fertilizer as a Partial substitution of the mineral nitrogen fertilization on the grain yield (ard./fed.) in 2014 and 2015

 soasons

sca	50115.									
Trea	tment		20	14		2015				
N mineral	organic &	Foliar application of Humic & Fulvic acid (C)								
fertilizer (A)	bio fertilizer (B)	water spray	Humic spray	Fulvic spray	Average	water spray	Humic spray	Fulvic spray	Average	
	(without)	20.495	21.243	21.205	20.981	21.380	22.533	22.668	22.193	
(60kg N/F) (Control)	10m ³ FYM/F	22.555	23.648	22.785	22.996	21.513	23.585	23.355	22.818	
()	(Microben)	22.100	22.515	22.473	22.363	22.718	23.520	23.458	23.232	
Average		21.717	22.468	22.154	22.113	21.870	23.213	23.160	22.748	
	(without)	25.913	27.875	26.448	26.745	25.515	27.760	27.198	26.824	
(90kg N/F)	10m ³ FYM/F	28.413	28.713	29.078	28.734	27.965	28.493	28.735	28.398	
	(Microben)	27.183	28.428	27.113	27.574	27.425	28.188	27.500	27.704	
Average		27.169	28.338	27.546	27.684	26.968	28.147	27.811	27.642	
	(without)	27.127	27.213	27.180	27.173	26.490	27.036	27.240	27.072	
(120kg N/F)	10m ³ FYM/F	27.973	28.339	28.046	28.119	27.308	28.318	27.703	27.776	
/	(Microben)	27.391	27.491	27.512	27.465	27.079	27.677	27.143	27.299	
Average		27.479	27.681	27.579	27.586	27.109	27.677	27.362	27.382	
Average for	(without)	24.512	25.443	24.944	24.966	24.612	25.776	25.702	25.363	
organic & bio-	10m ³ FYM/F	26.313	26.900	26.636	26.616	25.595	26.798	26.598	26.330	
fertilizer	(Microben)	25.558	26.144	25.699	25.800	25.740	26.461	26.033	26.078	
Average		25.461	26.162	25.760		25.316	26.365	26.111		

L.S.D_{0.05}

A=0.169 B=0.182 AB=0.316 C=0.187 AC=0.325 BC=N.S ABC=0.562

A=0.204 B=0.197 AB=0.341 C=0.200 AC=0.346 BC=0.346 ABC=0.599

I. Grain yield of maize as affected by inorganic, organic nitrogen fertilizers and activators (H.A and F.A). As shown in Tables 3 and 4, it is clear that there is a significant and gradual increase in grain yield was found by increasing nitrogen fertilizer levels from 60 to 120 kg N fed.⁻¹ during the two seasons of the study. The highest values were obtained by adding 90 kg N fed.⁻¹ (27.684 and 27.642 ard. Fed.⁻¹) in 2014 and 2015 seasons, respectively. Nitrogen is the key element in increasing grain yield and quality of maize. Nitrogen contributes 1-4% of dry matter production of the plants., Nitrogen deficiency causes stunted growth, delayed maturity and pale green or yellow color (chlorosis) of the leaves (Haque et al., 2001). The results are in agreement with Ortiz Monasterio et al. (1997), Derby et al., (2004), El-sheikh, 1998; Samira et al., 1998, Zeidan and Amany (2006) and (Singh, 1985).

Data given in Tables 3 and 4 indicated a significant improvement in grain yield was found due to the application of farm yard manure or biofertilizer (Microbein) more than the control (without organic fertilizers). The highest grain yield was obtained by application of 10m3 FYM fed.⁻¹ at land preparation during 2014 and 2015 seasons (26.616 and 26.330 ard. Fed.⁻¹, respectively). The increase of growth and yield components may be due to carry-over effect of applied nutrients to the preceding maize crop and higher availability of macro and micronutrients with the addition of FYM. This is in conformity with the findings of Ahmed and Thakur, (1998). The obtained results are in agreement with those reported by Munda et.al., (2007). Mokidul et.al., (2012) reported that an increase in maize grain yield owing to adding green leaf manure and FYM incorporation may be attributed to release of nutrients to soil slowly for longer duration after decomposition resulting in better plant growth and yield attributing characters.

The data listed in Tables 3 and 4 showed that application of Humic acid or Fulvic acid (H.A or F.A) as a foliar spraying gave significantly increasing in grain yield in seasons 2014 and 2015. The highest grain vield was obtained by spraying (H.A) during 2014 and 2015 seasons (26.162 and 26.365 ard. fed.⁻¹, respectively). This may be attributed that humic acid affected plant physiology positively, including enhancement of biomass yields, induction of lateral roots emergence, increase of cell respiration and membrane uptake of nutrients and exertion of hormonelike activities Puglisi., et.al., (2009). Celik et al. (2010) explained that humus had beneficial effects on nutrient uptake, transport and availability to maize plant that enhances the maize plant growth and increases maize yield. The ability of HA to release the nutrient slowly due to the decomposition of residue for a longer time could be the possible explanation for improved grain yield due HA application (Dev and Bhardwaj, 1995) These results are in agreement with Sharif et al. (2002) and (Kamran et.al., 2014).

By examining the data obtained in Tables 3 and 4 it is clear that the interaction between nitrogen fertilizer levels and FYM or Microbein led to a significant increase in grain yield in both seasons. It was found that the application of 90 kg N fed.⁻¹ combined with 10m3 FYM/fed. gave the highest values of grain yield (28.734 and 28.398 ard. fed.⁻¹) in 2014 and 2015 seasons, respectively. Increasing grain yield due to application of nitrogen fertilizer levels combined with FYM over the control may be
due to the effect of FYM in improv-
ing the physical and chemical proper-
ties of the soil. As well as, organic
manures plays a direct role in plant
growth as a source of all necessary
macro and micronutrients in available
forms during mineralization, Abou
El-Magd *et.al.*, (2006) and Chung *et.*
al., (2000) showed that application of
organic manures with an adequate
amount of chemical N fertilizer gave
sig
higher dry matter yield of maize. Theand
and
two the properties of the soil.

results are in consistent with the findings of a number of workers (Mishra *et.al.*, 1995; Al-Abdulsalam, 1997; Pandey *et al.*, 1998; Radwan, 1998 and Wu *et. al.*, 2005). They demonstrated that under certain environmental and soil conditions, application of FYM and inoculation with *Azotobacter* improved crop yield.

Results in Tables 3 and 4 showed that the interaction between nitrogen fertilizers levels with the studied activators (H.A and F.A) gave significant and positive increases more than those without (H.A and F.A) in grain yield during the two seasons. The highest grain yield values (28.338 and 28.147 ard./fed.) were found in 2014 and 2015 seasons by adding 90 kg N/fed. with spraying of (H.A). Similar results were also reported by Sharif et. al. (2002) who recorded that 20 -23 % highest maize shoot dry weight and grain yield over control were found with application of humic acid in combination with recommended dose of NPK. These in agreement with results are Muhammad. W., et.al., (2014), who reported that the higher grain yield due to HA application in this research corroborates the findings of David and Samule, (2002); Thenmozhi *et.al.* (2004); Albayrak, (2005); Khan *et.al.* (2010); Vanitha and Mohandass, (2014); Almarshadi and Ismail, (2014).

The data in Tables 3 and 4 indicated that the interaction effect between adding FYM or Microbein with spraying of H.A or F.A did not reach significancy on grain yield during 2014 season but there effect was significant during 2015 season. The highest value was obtained by adding 10m³ FYM fed⁻¹ with spraying of H.A (26.798 ard./fed.). These results are in agreement with found by (Wiqar. A., *et.al.*, 2013).

Tables 3 and 4 showed that interaction between the different factors under study led to significant increases in grain yield of maize in 2014 and 2015 seasons. It was found that the highest grain yield (29.078 and 28.735 ard./fed.) were obtained by adding 90 kg N/fed. and 10m3 FYM/fed. with spraying (F.A) during 2014 and 2015 seasons respectively. These results were in harmony with the findings of by Chung *et. al.*, (2000); Abou El-Magd *et.al.*, (2006) and Wiqar. A., *et.al.*, (2013).

II. N, P and K uptake of maize as affected by inorganic, organic nitrogen fertilizers and activators (H.A and F.A).

i. N uptake in grains (kg/fed.):

Data given in Tables 3 and 5 indicated that there is a significant and gradual increase in nitrogen uptake were found by adding nitrogen fertilizer from 60 up to 120 kg N/fed. during the two seasons under study. The highest values were obtained by adding 120 kg N/fed. (71.047 and 70.600 kg/fed) in 2014 and 2015 seasons, respectively. These results are in agreement with those obtained by Derby et al., (2004) and Hussaini et al., (2008). Who reported that the addition/supply of N enhances the production of small roots and root hairs of maize, which in turn facilitates the high absorbing capacity per unit of dry matter, and influence the uptake by the plant of soil. The same results was found by Dordas (2009) in wheat. The present results are in good agreement with those obtained by Epimaque et al., (2014) and Haque et al., (2001), they reported that Nitrogen uptake in grain of maize enhanced significantly with the application of higher levels of N as compared with lower doses of N.

Results in Tables 3 and 5 showed that application of FYM or Microbein gave significant increases in nitrogen uptake during 2014 and 2015 seasons. The highest values of nitrogen uptake were obtained by adding 10m3 FYM/fed. in 2014 and 2015 seasons (64.869 and 63.555 kg/fed., respectively). Saleh and Abd El-Fattah (1997) reported that N uptake by plant increased by adding organic manure. Also Mohamed *et al.*, (2008) and Mohamed *et al.*, (2009) found the same results.

The data listed in Tables 3 and 5 indicated that spraying the studied activators (H.A and F.A) gave significant increases in nitrogen uptake more than the control (spray water) during the two seasons under study. The highest values N uptake were found by spraying of H.A (63.403 and 62.977 kg/fed. in 2014 and 2015 seasons respectively). Celik *et al.* (2010) explained that humus had beneficial effects on nutrient uptake, ISSN: 1110-0486 E-mail: ajas@aun.edu.eg

transport and availability to maize plant that enhances the maize plant growth. Tahir *et.al.*, (2011), Puglisi., *et. al.*,(2009). Baris and Ali, (2013), also noted that potassium humate as product of HA increases the release of primary macronutrients (N, P and K). This may be attributed that humic acid affected plant physiology positively, including enhancement of induction of lateral roots emergence, increase of cell respiration and membrane uptake of nutrients and exertion of hormone- like activities.

Tables 3 and 5 showed that interactions between nitrogen fertilizer levels and FYM or Microbein led to significant and positive increases in N uptake more than those obtained by control in 2014 and 2015 seasons. Adding 120 kg N/fed. with 10m3 FYM/fed. Obtained the highest values of nitrogen uptake (75.752 and 74.944 kg/fed.) in 2014 and 2015 seasons, respectively. Abou El-Magd et. al., (2006), reported that FYM improves the physical and chemical properties of the soil. As well as, organic manures plays a direct role in plant growth as a source of all necessary macro and micronutrients in available forms during mineralization. Saleh and Abd El-Fattah (1997), reported that N uptake by plant increased by adding organic manure. Hauka, (2000) noted that inoculation with Bacillus megaterium increased significantly nutrient content (N,P and K) in maize compared with control. El-Sawah, (2000). also noted that N content in maize plant significantly increased by the synergistic effect mainly between both N-fixing bacteria and P-solubilizers microorganism.

 Table 5. Effect of some organic and bio fertilizer as a Partial substitution of the mineral nitrogen fertilization on N uptake (kg/fed.) in grains of maize in 2014 and 2015 seasons.

Treat	ment		2	014		2015				
N mineral	organic &		Foliar application of Humic & Fulvic acid (C)							
fertilizer	bio fertilizer	water	Humic	Fulvic	Average	water	Humic	Fulvic	Avorago	
(A)	(B)	spray	spray	spray	Average	spray	spray	spray	Average	
$(60 \log N/E)$	(without)	41.114	46.651	46.543	44.769	43.788	46.623	47.857	46.089	
(Control)	10m ³ FYM/F	49.029	54.619	50.952	51.533	44.965	49.778	53.200	49.314	
(Control)	(Microben)	45.940	51.534	53.080	50.184	48.190	53.578	51.732	51.167	
Average		45.361	50.934	50.191	48.829	45.647	49.993	50.930	48.857	
	(without)	60.147	65.370	61.161	62.226	59.340	65.269	63.465	62.691	
(90kg N/F)	10m ³ FYM/F	66.039	67.337	68.594	67.323	64.981	66.624	67.614	66.406	
	(Microben)	63.857	67.338	64.378	65.191	63.271	66.676	66.559	65.502	
Average		63.347	66.682	64.711	64.913	62.531	66.190	65.879	64.867	
	(without)	66.842	66.862	67.964	67.223	66.225	66.304	68.037	66.865	
(120kg N/F)	10m ³ FYM/F	71.079	80.121	76.055	75.752	68.879	80.539	75.414	74.944	
	(Microben)	68.073	70.797	71.632	70.167	67.753	71.400	70.821	69.991	
Average		68.665	72.593	71.884	71.047	67.629	72.748	71.424	70.600	
Average for	(without)	56.034	59.628	58.556	58.073	56.461	59.399	59.786	58.549	
organic &	10m ³ FYM/F	62.049	67.359	65.200	64.869	59.608	65.647	65.409	63.555	
bio-fertilizer	(Microben)	59.290	63.223	63.030	61.848	59.738	63.885	63.037	62.220	
Average		59.124	63.403	62.262		58.602	62.977	62.744		
L.S.	D _{0.05}		A=0.7	738		A=0.990				
			B=0 7	152		B=0 786				

A=0.738 B=0.752 AB=1.302 C=0.748 AC=1.296 BC=N.S ABC=2.245

Examining the data in Tables 3 and 5, it is clear that the interaction between nitrogen fertilizer levels and spraying of H.A or F.A gave significant increase in nitrogen uptake in 2014 seasons. In 2015 season the increases did not reach significantcy. The highest values was obtained by applying 120 kg N fed.⁻¹ with spraying of H.A (72.593 kg fed.⁻¹) in 2014 season. Pinton et al. (1999) suggest that humic substances play a role in the modulation of nitrate uptake and therefore increase N uptake in plant via an interaction with plasma membrane H+ -ATPase. In their study the contemporary presence of nitrate and humic substances caused stimulation of the nitrate uptake capacity and of the plasma membrane H+ -ATPase activity with the same pattern observed for nitrate uptake. The stimulation of plasma membrane H+ -

ATPase activity was also reported by several other authors (Eyheraguibel, 2004; Canellas *et al.*, 2002) and (Hartwigsen and Evans, 2000).

AB=1.361

C=0.722

AC=N.S

BC=1.251

ABC=2.166

The data in Tables 3 and 5, indicated that the interaction effects between adding FYM or Microbein with spraying of (H.A or F.A) was not significant on increasing nitrogen uptake in 2014 season, but in 2015 season it was highly significant. The highest value in nitrogen uptake was obtained by adding 10m3 FYM/fed. with spraying H.A in 2015 season (65.647 kg/fed.). Saleh and Abd El-Fattah (1997) reported similar results and noted that N uptake by plant increased by adding organic manure. Inoculation with Bacillus megatherium increased significantly nutrient content (N,P and K) in maize as compared with control. Also Hauka, (2000), declined that N content in maize plant significantly increased by the synergistic effect mainly between both N-fixing bacteria and Psolubilizers microorganism, El-Sawah, (2000). The results are in agreement with Abou El-Magd *et al.*, (2006) and Mohamed *et al.*, (2009).

Tables 3 and 5, showed that the interaction between the different factors under study led to significant increases in nitrogen uptake more than the control in 2014 and 2015 seasons. It was found that the application of 120 kg N/fed. combined with 10m3 FYM/fed. with spraying H.A gave maximum values of nitrogen uptake (80.121 and 80.539 kg/fed.) in 2014 and 2015 seasons respectively. This may be to the fact that mineralized nutrients released by FYM are easily taken up by the plants and result in higher N uptake by grain. Similar results were, also, reported by Steinbach et al. (2004), (Hauka, 2000); (El-Sawah, 2000) and (Meena et al., 2013).

ii. *P uptake in grains (kg/fed.):*

The data listed in Tables 3 and 6 indicated that application of nitrogen fertilizer levels, significantly increase the phosphorus uptake of maize, over the control in both seasons. The highest phosphorus uptake were found by adding 120 kg N/fed. (17.039 and 17.390 kg/fed.) in 2014 and 2015 seasons respectively. Hussaini et al., (2008) in maize reported that the addition/supply of N enhances the production of small roots and root hairs, which in turn facilitates the high absorbing capacity per unit of dry matter, and influence the uptake by the plant of soil. The results are in good agreement with those obtained by

Dordas (2009) and Epimaque *et al.*, (2014).

Application of FYM or Microbein significantly increase the phosphorus uptake as compared to the control (without organic or biofertilizers) during 2014 and 2015 seasons. It was found that the highest value of phosphorus uptake was obtained by adding 10m³ FYM/fed. (15.937 and 16.229 kg/fed.) in 2014 and 2015 seasons, respectively. This finding is in tha same side of results obtained by Hauka., (2000); Mohamed *et al.*, 2008; Mohamed *et al.*, (2009) and Meena *et al.*, (2013).

Spraying of H.A or F.A had positive and significant effects on phosphorus uptake by maize during 2014 and 2015 seasons in (Tables 3 and 6). The highest phosphorus uptake values (15.836 and 16.271 kg/fed.) were found by spraying of H.A in 2014 and 2015 seasons, respectively. Similar results was obtained by Puglisi., et al., (2009); Celik et al. (2010) and Tahir et al., (2011). They indicated that potassium humate as product of HA increases the release of primary macronutrients (N, P and K). Baris and Ali, (2013) explained that humic acid affected plant physiology positively, including enhancement of induction of lateral roots emergence.

Data in Tables 3 and 6 showed that the interaction effects between nitrogen fertilizer levels and FYM or Microbein gave significant increases in phosphorus uptake in grains more than those obtained by control in both 2014 and 2015 seasons. The highest value of phosphorus uptake (17.661 kg/fed) was found by adding 120 kg N/fed. combined with 10m³ FYM/fed. in 2014 season, but in 2015 season the highest value was 17.592 kg/fed. by adding 90 kg N/fed. combined with 10m³ FYM/fed. These re-

sults are in agreement with those obtained by Hauka, (2000); El-Sawah, (2000); Mokidul *et al.*, (2012) and Meena *et al.*, (2013).

Table 6. Effect of some organic and bio fertilizer as a Partial substitution of the mineral nitrogen fertilization on P uptake (kg/fed.) in grains of maize in 2014 and 2015 seasons.

Trea	tment		20	14		2015				
N mineral	organic &		Foliar application of Humic & Fulvic acid (C)							
fertilizer	bio fertilizer	water	Humic	Fulvic	Avorago	water	Humic	Fulvic	Average	
(A)	(B)	spray	spray	spray	Average	spray	spray	spray	Average	
$(60\log N/E)$	(without)	11.372	11.925	12.439	11.912	11.693	12.618	13.352	12.554	
(OUKg N/F)	10m ³ FYM/F	12.566	14.103	13.222	13.297	12.672	14.594	14.208	13.824	
(Control)	(Microben)	12.684	13.609	13.551	13.282	12.216	13.550	13.514	13.093	
Average		12.207	13.213	13.071	12.830	12.193	13.587	13.691	13.157	
	(without)	15.209	17.446	15.430	16.028	13.790	16.422	17.098	15.770	
(90kg N/F)	10m ³ FYM/F	16.955	16.476	17.127	16.853	17.108	17.998	17.670	17.592	
	(Microben)	16.307	17.601	16.444	16.784	16.337	17.970	17.018	17.108	
Average		16.157	17.174	16.334	16.555	15.745	17.463	17.262	16.823	
(1201-2	(without)	15.686	16.267	16.422	16.125	17.417	17.638	17.250	17.435	
(120Kg N/F)	10m ³ FYM/F	18.093	17.416	17.473	17.661	17.310	18.028	16.471	17.270	
14/17)	(Microben)	17.525	17.676	16.796	17.333	17.326	17.619	17.451	17.465	
Average		17.101	17.120	16.897	17.039	17.351	17.762	17.058	17.390	
Average for	(without)	14.089	15.213	14.764	14.688	14.300	15.559	15.900	15.253	
organic &	10m ³ FYM/F	15.871	15.998	15.941	15.937	15.697	16.873	16.116	16.229	
bio- fertilizer	(Microben)	15.505	16.296	15.597	15.799	15.293	16.380	15.994	15.889	
Average		15.155	15.836	15.434		15.096	16.271	16.004		

L.S.D_{0.05}

A=0.088
B=0.118
AB=0.204
C=0.149
AC=0.257
BC=0.257
ABC=0.446

A=0.147 B=0.149 AB=0.258 C=0.148 AC=0.257 BC=0.257 ABC=0.444

Examining the data obtained Tables 3 and 6 it is clear that the interaction between nitrogen fertilizer levels and the studied activators (H.A or F.A) had significant effects increases phosphorus uptake in both seasons. It was found that the highest value of P uptake in 2014 season was (17.174 kg/fed.) which obtained by adding 90 kg N/fed. with spraying (H.A)., In 2015 season the highest value (17.762 kg/fed.) of P uptake was obtained by adding 120 kg N/fed. with spraying (H.A). This finding is consistent with studies conducted by Celik et al. (2010) explained that humus had beneficial effects on nutrient uptake, transport and availability to

maize plant that enhances the maize plant growth.

Tables 3 and 6 showed that application of FYM or Microbein combined with studied activators (H.A or F.A) had a significant effects on increasing phosphorus uptake in grains in both seasons under study. The highest phosphorus uptake value in 2014 season (16.296 kg/fed.) was obtained by adding Microbein with spraying H.A., but in 2015 season the highest value (16.873 kg/fed.) was obtained by adding 10m³ FYM/fed. with spraying (H.A). Results of the present investigation to some extant corroborate the findings of Mohamed et al., (2009) and Aisha et al., (2014).

The data in Tables 3 and 6 clear that the interactions between all factors under study led to significant increases in phosphorus uptake more than the control (60 kg N/fed.) during the two seasons under study. The highest value of P uptake (18.093 kg/fed.), in 2014 season, was obtained by adding 120 kg N/fed. combined with 10m³ FYM/fed., but in the highest value 2015 season (18.028 kg/fed.) was obtained by adding 120 kg N/fed. combined with both 10m³ FYM/fed. and spraying (H.A). Similar results was obtained by Hauka, (2000); El-Sawah, (2000); Mokidul et al., (2012) and (Meena et al.,(2013).

i. K uptake in grains (kg/fed.):

Regarding the data in Tables 3 and 7 it is clear that there is a significant and gradual increase in potassium uptake were found by adding nitrogen fertilizer levels from 60 to 120 kg N/fed. during the two seasons of the study. The highest values (20.406 and 20.338 kg/fed) were obtained by adding 120 kg N/fed. in 2014 and 2015 seasons, respectively. Results of present investigation corroborate the findings of Haque *et al.*, (2001).

Results in Tables 3 and 7 showed that application of FYM or Microbein gave significant increases in potassium uptake in grains during 2014 and 2015 seasons. The highest values potassium uptake (19.155 and 19.075 kg/fed.) were found by adding 10m³ FYM/fed. in 2014 and 2015 seasons, respectively. This finding is consistent with studies conducted by Hauka, (2000); Mohamed *et al.*, (2008) and Meena *et al.*, (2013).

Results presented in Tables 3 and 7 indicate that potassium uptake in maize grains was significantly affected by studied activators (H.A or F.A) in 2014 and 2015 seasons. It was found that the highest K uptake (18.817 and 19.102 kg/fed.) were obtained by spraying H.A in 2014 and 2015 seasons, respectively. Similar results was obtained by Puglisi., et al.,(2009); Celik et al. (2010). Tahir et al., (2011) and Baris and Ali (2013) reported that potassium humate as product of HA increases the release of primary macronutrients (N, P and K). This may be attributed that humic acid affected plant physiology positively, including enhancement of induction of lateral roots emergence.

From data in Tables 3 and 7 it could be noticed that the interactions between nitrogen fertilizer levels with FYM or Microbein significantly increased potassium uptake over the control in the two seasons. The highest K uptake (20.746 and 20.874 kg/fed.) were obtained by adding 90 kg N/fed. combined with 10m³ FYM/fed., in 2014 and 2015 seasons., respectively. Similar results were obtained by Hauka, (2000); El-Sawah, (2000); Mokidul *et al.*,(2012) and Meena *et al.*, (2013).

The interaction between nitrogen fertilizer levels and studied activators H.A and F.A affected potassium uptake in maize grains positively and significantly during 2014 and 2015 seasons. The highest values of K uptake (20.477 and 20.539 kg/fed.) were found by adding 120 kg N/fed., with spraying H.A in 2014 and 2015 seasons, respectively. This finding is consistent with those obtained by Celik *et al.* (2010), who explained that humus had beneficial effects on nutrient uptake.

Data reported in Table 3 and 7 revealed that the interaction effects between FYM or Microbein and studied activators H.A or F.A on K uptake were significant in both seasons 2014 and 2015 seasons,. The highest value of K uptake (19.342 kg/fed.) adding was obtained by $10\mathrm{m}^3$ FYM/fed. alone in 2014 season. while in 2015 season the highest value of K uptake in grains was obtained by 10m³ FYM fed.⁻¹ beside spraying of F.A (19.361 kg fed.⁻¹),. These results are agreement whit those obtained by Mohamed *et al.*, (2009).

Interactions between all studied factors affected significantly potassium uptake in both seasons under study. The highest K uptake (21.362 kg/fed.) was found in 2014 season by adding 90 kg N/fed. combined with 10m³ FYM/fed., while in 2015 season the highest K uptake was obtained by 120 kg N/fed. alone (21.226 kg/fed.). This results is in agreement with studies conducted by (Hauka, 2000); (El-Sawah, 2000); (Mokidul *et al.*, 2012) and (Meena *et al.*, 2013).

Table 7. Effect of some organic and bio fertilizer as a Partial substitution of the mineral nitrogen fertilization on K uptake(kg/fed.) in grains of maize in 2014 and 2015 seasons

and 2015 seasons.										
Trea	atment		2	2014		2015				
N mineral	organic & bio		Foliar application of Humic & Fulvic acid (C)							
fertilizer	fertilizer	water	Humic	Fulvic	Average	water	Humic	Fulvic	Average	
(A)	(B)	spray	spray	spray	Average	spray	spray	spray	Average	
(60kg N/F)	(without)	14.625	14.749	14.651	14.675	15.415	16.245	15.988	15.882	
(Control)	10m ³ FYM/F	15.948	15.958	16.269	16.058	15.029	16.101	17.142	16.091	
(Control)	(Microben)	15.401	16.202	16.233	15.945	15.512	16.503	16.244	16.086	
Average		15.325	15.636	15.718	15.560	15.319	16.283	16.458	16.020	
	(without)	18.982	20.419	20.385	19.929	19.280	19.887	20.552	19.906	
(90kg N/F)	10m ³ FYM/F	21.362	19.849	21.026	20.746	20.757	20.896	20.969	20.874	
	(Microben)	19.131	20.747	19.348	19.742	19.848	20.669	19.635	20.051	
Average		19.825	20.339	20.253	20.139	19.961	20.484	20.386	20.277	
(1201-2	(without)	20.405	20.306	19.929	20.213	21.226	20.619	19.726	20.524	
(120Kg N/E)	10m ³ FYM/F	20.717	20.680	20.584	20.660	20.118	20.694	19.971	20.261	
11/1)	(Microben)	20.592	20.447	19.998	20.345	20.729	20.304	19.654	20.229	
Average		20.571	20.477	20.170	20.406	20.691	20.539	19.784	20.338	
Average for	(without)	18.004	18.491	18.322	18.272	18.640	18.917	18.755	18.771	
organic &	10m ³ FYM/F	19.342	18.829	19.293	19.155	18.635	19.230	19.361	19.075	
bio- fertilizer	(Microben)	18.375	19.132	18.526	18.678	18.696	19.159	18.511	18.789	
Average		18.574	18.817	18.714		18.657	19.102	18.876		
L.S	S.D _{0.05}		A=0.2 B=0.1	200 110			A=0.265 B=0.254			

AB=0.190 C=192 AC=0.332 BC=0.332 ABC=0.575

 19.102
 1

 A=0.265
 B=0.254

 AB=0.440
 C=0.180

 AC=0.311
 BC=0.311

 ABC=0.539
 ABC=0.539

III. Protein content in grain of maize as affected by inorganic, organic nitrogen fertilizers and activators (H.A and F.A).

The effect of nitrogen fertilizer levels on Protein content in grains,

Tables 3 and 8 was positive, gradual and significant increase, in both seasons under study. The highest Protein content (10.847 and 10.859 %) were found by adding 120 kg N/fed. in 2014 and 2015 seasons, respectively. This effect may be due to the highest N concentration in grains under this treatment. These improvement effects were, also, found by Hussaini *et al.*, (2008) in maize and Dordas (2009) in wheat. This results are in good agreement with those obtained by Epimaque *et al.*, (2014).

The data listed in Tables 3 and 8 indicated that application of FYM or Microbein gave significant increasing in Protein content during 2014 and 2015 seasons. It was found that the highest Protein content (10.221 and 10.106 %) were obtained by adding 10m³ FYM/fed. in 2014 and 2015 seasons, respectively. This finding is in the same direction of those obtained by Meena *et al.*,(2013).

Examining the data obtained in Tables 3 and 8, it is cleared that the

studied activators (H.A and F.A) led to significant increases in Protein content as compared to the control (spray water) in 2014 and 2015 seasons. The highest value of Protein content (10.167 %) was found in 2014 season by spraying H.A, while in 2015 the highest value of protein content (10.082 %) was obtained by spraying (F.A). This increase in protein content may be attributed to the effect of humic acid which may have various biochemical effects either at cell wall, membrane level or in the cytoplasm, including increased photosynthesis and respiration rates in plants, enhanced protein synthesis and plant hormone-like activity, Chen et al., (1999). Similar results was obtained by Hoda et al., (2014).

Table 8. Effect of some organic and bio fertilizer as a Partial substitution of the mineral nitrogen fertilization on Protein content (%) in maize grains in 2014 and 2015 seasons.

Trea	tment		20	14			20	015	
N mineral	organic &		F	oliar appli	cation of H	umic & Fu	lvic acid (O	C)	
fertilizer	bio fertilizer	water	Humic	Fulvic	Avenage	water	Humic	Fulvic	A
(A)	(B)	spray	spray	spray	Average	spray	spray	spray	Average
(60kg	(without)	8.455	9.250	9.250	8.985	8.632	8.720	8.897	8.750
N/F)	10m ³ FYM/F	9.161	9.734	9.424	9.440	8.809	8.896	9.601	9.102
(Control)	(Microben)	8.760	9.645	9.953	9.453	8.940	9.601	9.294	9.278
Average		8.792	9.543	9.542	9.292	8.793	9.072	9.264	9.043
(001/a	(without)	9.782	9.883	9.747	9.804	9.801	9.909	9.834	9.848
(90kg N/F)	10m ³ FYM/F	9.794	9.883	9.942	9.873	9.793	9.854	9.916	9.854
14/1)	(Microben)	9.900	9.983	10.006	9.963	9.719	9.970	10.201	9.963
Average		9.825	9.916	9.898	9.880	9.771	9.911	9.984	9.889
(120kg	(without)	10.384	10.355	10.537	10.425	10.365	10.335	10.527	10.409
(120kg N/F)	10m ³ FYM/F	10.709	11.915	11.428	11.351	10.630	11.983	11.474	11.362
N/F)	(Microben)	10.473	10.853	10.971	10.766	10.545	10.872	10.996	10.804
Average		10.522	11.041	10.979	10.847	10.513	11.063	10.999	10.859
Average	(without)	9.540	9.829	9.845	9.738	9.599	9.655	9.753	9.669
for organic	10m ³ FYM/F	9.888	10.510	10.265	10.221	9.744	10.244	10.330	10.106
& bio- fertilizer	(Microben)	9.711	10.160	10.310	10.060	9.735	10.148	10.164	10.015
Average		9.713	10.167	10.140		9.693	10.016	10.082	
L.S	.D _{0.05}		A=0.116				A=0.158	}	
			B=0.100				B=0.087	1	
			AB=0.17	73		AB=0.151			
			C=0.093			-	C=0.093	;	
		AC=0.161				AC=0.161			
			BC=0.10	51			BC=0.10	61	
			ABC=0.	278			ABC=0.	278	

Data given in Tables 3 and 8, indicated that the interaction between nitrogen fertilizer levels with FYM or Microbein gave significant increases in Protein content more than those obtained by control in 2014 and 2015 seasons. The highest values were obtained by adding 120 kg N/fed. combined with 10m³ FYM/fed. (11.351 and 11.362 %) in 2014 and 2015 seasons, respectively. Similar finding was conducted by Meena *et al.*, (2013).

Results in Tables 3 and 8, showed that the interaction between nitrogen fertilizers levels and the studied activators (H.A or F.A) led to significant and positive increase in Protein content during the two seasons under study. It was found that the highest values of protein content (11.041 and 11.063 %) were obtained by adding 120 kg N/fed. with spraying H.A in 2014 and 2015 seasons respectively. These findings are in harmony with those obtained by Chen *et al.*, (1999) and Hoda *et al.*, (2014).

The data in Tables 3 and 8, indicated that the interaction between FYM or Microbein with the studied activators (H.A or F.A) gave significant increasing in Protein content during 2014 and 2015 seasons. The highest Protein content (10.510 %) in 2014 season was obtained by adding 10m3 FYM/fed. and spraying H.A. but in 2015 season the highest protein content (10.330 %) was found by adding 10m³ FYM/fed. with spraying F.A. These findings are in harmony with those obtained by Mohamed et al., (2008); Mohamed et al., (2009) in maize, and Aisha et al., (2014) in turnip plants.

Results in Tables 3 and 8, showed that the interaction between all different factors had significant increases in Protein content more than those obtained by control (60 kg N/fed., alone) in 2014 and 2015 seasons. The highest values of protein content (11.915 and 11.983 %) were obtained by adding 120 kg N/fed. combined with 10m³ FYM/fed. under spraying H.A during 2014 and 2015 seasons respectively. This effect may be due to the highest N concentration in grains under this treatment. These improvement effects were, also. found by Hussaini et al., (2008) in maize; and Dordas (2009) in wheat. The obtained results are in a good agreement with those obtained by Mohamed et al., (2008); Mohamed et al., (2009); Epimaque et al., (2014) and Hoda et al., (2014).

Conclusions

The obtained results revealed that a significant and gradual increase in grain yield, N, P and K uptake, protein content were found by adding nitrogen fertilizer levels from 60 to 120 kg N fed⁻¹ during the two seasons of the study. The results also revealed a significant improvement in grain vield due to the application of FYM or Microbein as compared with the control (without organic or bio- fertilizers). Applications of humic acid had a significant effect of all studied traits. The interaction effects of all factors under study were highly significant for all studied traits. Highest values in grain yield (29.078 and 28.735 ard. fed⁻¹) were obtained by adding 90 kg N fed⁻¹. combined with 10m3 FYM fed⁻¹. under spraving (F.A) during 2014 and 2015 seasons respectively. The applications of 10m3 FYM fed⁻¹. or Microbein with spraying of H.A or F.A combined with 75% of the recommended dose of N fertilizer could be enough for improving soil fertility and produce grain yield equal or more than those obtained by the recommended dose.

References

- Abou El-Magd, M.A., M. El-Bassiony. and Z.F. Fawzy. (2006). Effect of organic manure with or without chemical fertilizers on growth, yield and quality of some varieties of Broccoli plants. J. Appl. Sci. Res., 2 (10):791-798.
- Ahmed, S. and Thakur. A.C. (1998).
 Rice-rapeseed/mustard. In: Predominant cropping systems of India: Technologies and Strategies.
 (Eds.). Yadav R L, Prasad K and Singh A K, Project Directorate of Cropping Systems Research, Modipuram, Meerut, India, p 237.
- Aisha, H. Ali., M.R. Shafeek., Mahmoud., R. Asmaa and M. El- Desuki. (2014) Effect of Various Levels of Organic Fertilizer and Humic Acid on the Growth and Roots Quality of Turnip Plants (*Brassica rapa*). Current Science International, 3(1): 7-14.
- Al-Abdulsalam, M.A. (1997). Influence of nitrogen fertilization rates and residual effect of organic manure rates on the growth and yield of wheat (*Triticum aestivum L.*). Arab Gulf Journal of Scientific Research 15(3): 647-660.
- Albayrak, S.C. (2005). Effects of Different Levels and Application Times of Humic Acid on Root and Leaf Yield and Yield Components of Forage Turnip (*Brassica rapa* L.). Journal of Agronomy, 4, 130-133. http://dx.doi.org/10.3923/ja.2005.1 30.133
- Almarshadi, M.S. and Ismail, S.M. (2014). Barley Growth and Productivity as Affected by Soil

Amendments under Fully and Minimum Irrigation Conditions in Saudi Arabia. *Life Science Journal*, 11, 223-230.

- Anonymous, (2010). Humic and fulvic acids: The black gold of agriculture. Retrieved from www.humintech.com/ pdf/ humicfulvic acids.pdf.
- AOAC, (1980). Official Methods of Analysis. 13th Ed. Association of Official Analytical Chemists, Washington, USA.
- Baris. B. A. and Ali V. K. (2013). Determination of effects on solid and liquid humic substances to plant growth and soil micronutrient availability. Journal of Food, Agriculture & Environment Vol.11 (2): 1182-1186.
- Canellas, L.P., Olivares, F.L., Okorokovha-Fac,anha, A.I and Fac,anha, A.R., (2002). Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence and plasma membrane H+- ATPase activity in maize root. Plant Physiol. 130, 1951–1957.
- Celik, H., A.V. Katkat., B.B. Asik and M.A. Turan, (2010). Effect of humus on growth and nutrient uptake of maize under saline and calcareous soil conditions. Agriculture, 97: 15-22.
- Chen,Y., C. E. Clapp, H. Magen and V.W. Cline. (1999). Stimulation of Plant Growth by Humic Substances: Effects on Iron Availability. In: Ghabbour, E.A. and Davies, G. (eds.), Understanding Humic Substances: Advanced Methods, Properties and Applications. Royal Society of Chemistry, Cambridge, UK: pp: 255-263.
- Chung, R.S., Wang, C.H., Wang, C.W and Wang, Y.P. (2000). Influence of organic matter and inorganic fertilizer on the growth and nitro-

gen accumulation of corn plants. J. Plant Nutr., 23: (3):297-311.

- David, R.A. and Samuel, M. (2002).
 Plant Growth Stimulation of Lignite Humic Acid. Part-II. Effect of Lignite Derived Ammonium Humate on Mustard (*Brassica juncea* L.) Using Different Levels of Phosphate Fertilizer. *Pakistan Council of Scientific and Industrial Research*, 45, 273-276.
- Derby, N. E., Casey, F. X. M., Knighton, R. E., and Steel, D. D. (2004). Midseason nitrogen fertility management for corn based on weather and yield prediction. *Agron. J.*, 96, 494-501. http://dx.doi.org/10.2134/ agronj2004.0494
- Dev, S. P., and Bhardwaj, K. K. K. (1995). Effect of crop wastes and nitrogen levels of biomass production and nitrogen uptake in wheatmaize sequence. *An. Agric. Res.*, 16, 264-267.
- Dordas. C., (2009). Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization as affected by N and P fertilization and source-sink relations. Eur J Agron 30: 129-139.
- Drk, A. Tel. (1984). Soil & Plant Analysis. Study for agricultural laboratory direators and technologists working in tropical regions. International Institute of Tropical Agriculture.
- El-Sawah, M.M.A. (2000). Impact of composed inoculation with N₂fixing, phosphate- solubilizing bacteria and Vesicular-Arbuscular Mycorrhiza on growth and nutrition of maize plants in a calcareous soil. J. Agric. Sci. Mansoura Univ., 25 (4): 2339-2350.
- El-Sheikh, F. T. (1998). Effect of soil application of nitrogen and foliar application with manganese on grain yield and quality of maize (*Zea mays L*). *Proc. 8th Conf.*

Agron., Suez Canal Univ., Ismailia, Egypt, 28-29 Nov., pp. 182-189.

- Epimaque, N., Tapas, K.D., Dhian, S.R., S. and Naresh, K. (2014). Nitrogen and phosphorus effects on winter maize in an irrigated agroecosystem in western Indo-Gangetic plains of India. Maydica electronic publication 59: 152-160.
- Ertani, A., L. Cavani, D. Pizzeghello, E.
 Brandellero, A. Altissimo, C.
 Ciavatta and S. Nardi, (2009). Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seed-lings. J. Plant Nutr. Soil Sci., 172: 237-244.
- Ertani, A., O. Francioso, V. Tugnoli, V.
 Righi and S. Nardi, (2011). Effect of commercial lignosulfonate- humate on *Zea mays* L. metabolism.
 J. Agric. Food Chem., 59: 11940-11948.
- Eyheraguibel, B., (2004). Caracte'risation des substances humiques bio- mime'tiques. Effets sur les ve'ge'taux. Ph.D. Thesis, Institut National Polytechnique, Toulouse.
- Garcia-Mina, J.M., M.C. Antolin and M. Sanchez-Diaz, (2004). Metal- humic complexes and plant micronutrient uptake. Plant and Soil, 258(1): 57-68.
- Gastal, F. and G. Lemaire, (2002). N uptake and distribution in crops: an agronomical and ecophysiological perspective. J. Exp. Bot., 53: 789-799.
- Haggag, W.M., (2013). Corn Diseases and Management. J. Appl. Sci. Res., 9(1): 39-43.
- Haque, M. M., Hamid, A., & Bhuiyan, N. I. (2001). Nutrient uptake and productivity as affected by nitrogen and potassium application levels in maize/sweet potato inter-

cropping system". Korean J. Crop Sci., 46(1), 1-5.

- Hartwigsen, J.A and Evans, M.R., (2000). Humic acids seed and substrate treatments promote seedling root development. Hort. Sci. 35, 1231–1233.
- Hauka, F.I.A. (2000). Effect of using single and composite inoculation with Azospirillum brasilense, Bacillus megaterium var. phosphaticum and Glomus macrocarpus for improving growth of Zea mays. J. Agric. Sci. Mansoura Univ., 25 (4): 2327-2338.
- Hoda Kh. A. El-Mekser, Zahrat El-Ola M. Mohamed and Mona A.M. Ali. (2014). Influence of Humic Acid and Some Micronutrients on Yellow Corn Yield and Quality. World Applied Sciences Journal 32 (1): 01-11.
- Hussaini., M.A., Ogunlela., V.B., Ramalan., A.A and Falaki. A.M., (2008). Mineral composition of dry season maize (*Zea mays* L) in response to varying levels of nitrogen, phosphorus and irrigation at Kadawa, Nigeria. World J Agric Sci 4 (6): 775-780.
- Jackson, M.L. (1958). Soil Chemical Analysis, constable & Co. Led London.
- Jackson, M.L. (1973). "Soil Chemical Analysis". Prentice-Hall of India Private Limited. New Delhi.
- Jones, J. B., Jr., (2001). Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC, Boca Raton London New York Washington, D.C.
- Kamran, A. and S. K., (2014). Phenology, Yield and Yield Components of Maize as Affected by. Journal of Agricultural Science, pp. 286-293.
- Khan, R.U., Rashid, A., Khan, M.S. and Ozturk, E. (2010). Impact of Humic Acid and Chemical Fertilizer

Application on Growth and Grain Yield of Rainfed Wheat (*Triticum aestivum* L.). Pakistan Journal of Agricultural Research, 23, 113-121.

- Meena, M. D., D. D. Tiwari, S. K. Chaudhari, D. R. Biswas, B. Narjary, A. L. Meena, B. L. Meena and R. B. Meena. (2013). Effect of Biofertilizer and Nutrient Levels on Yield and Nutrient Uptake by Maize (*Zea mays* L.). Annals of Agri-Bio Research 18 (2) : 176-181.
- Mishra, O.R., U.S. Tomar, R.A. Sharama and A.M. Rajput. (1995). Response of maize to chemicals and biofertilizers. Crop Research 9: 233-237.
- Mohamed A.A. Bakry, Yasser R.A and Samir A.M. (2009). Importance of Micronutrients, Organic Manure and Biofertilizer for Improving Maize Yield and its Components Grown in Desert Sandy Soil. Research Journal of Agriculture and Biological Sciences, 5(1): 16-23.
- Mohamed S.A. Ewees, Sawsan A. Seaf El YAZAL and Dalia M. El Sowfy. (2008). Improving Maize Grain Yield and its Quality Grown on a Newly Reclaimed Sandy Soil by Applying Micronutrient, Organic Manure and Biological Inoculation. Research Journal of Agric. Biol. Sci, 4(5): 537-544.
- Mokidul, I. and G. C. Munda. (2012). Effect of organic and inorganic fertilizer on growth, productivity, nutrient uptake and economics of maize (Zea mays L.) and toria (Brassica campestris L.). Agricultural Science Research Journals Vol. 2(8), pp. 470-479.
- Muhammad, W., Bashir. A., Muhammad. A., Fazal. M., Abdul Latif K., Muhammad A., Sang-Mo. K. and Yoon-Ha K., (2014). Evaluation of Humic Acid Application Methods

for Yield and Yield Components of Mungbean. American Journal of Plant Sciences, 2269-2276 Published Online July 2014 in SciRes. <u>http://www.scirp.org/journal/ajps</u> http://dx.doi.org/10.4236/ajps.2014 .515241.

- Munda, G.C. and Islam. M., (2007). Effect of IPNS on productivity, profitability and economic feasibility of maize based cropping system on farmers' field. Indian Journal of Agricultural Research Vol. 41(3), pp: 200-204.
- Ortiz-Monasterio, J. I., Sayre, K. D., Rajaram, S., and McMahom, M. (1997). Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. *Crop Sci.*, *37*, 898-904. http://dx.doi.org/10.2135/ cropsci1997.0011183X003700030033x
- Pandey, A., E. Sharma and L.M.S. Palni. (1998). Influence of bacterial inoculation on maize in upland farming system of the Sikkim Himalaya. Soil Biology and Biochemistry 30: 379-384.
- Pinton, R., Cesco, S., Lacolettig, G., Astolfi, S., Varanini, Z., (1999).
 Modulation of NO₃- uptake by water-extractable humic substances: Involvement of root plasma mebranes H+ ATPase. Plant and Soil. 215, 155–161.
- Puglisi, E., G. Fragoulis, P. Ricciuti, F. Cappa, R. Spaccini, A. Piccolo, M. Trevisan and C. Crecchio, (2009).
 Effect of a HA and its size-fractions on the bacterial community of soil rhizosphere under maize (*Zea mays* L.). Chemoshere, 77: 829-837.
- Radwan, F.I. (1998). Response of some maize cultivars to VA–mycorrhizal inoculation, biofertilization and soil nitrogen application. Alexan-

dria Journal of Agriculture Research 43: 43-56.

- Saleh, A.L. and A. Abd El-Fattah, (1997). Response of nutrients uptake and dry weight of sorgam to application of FYM, poultry and their combination alone or with chemical fertilizers. Egypt. J. Appl. Sci., 12 (12): 271-278.
- Samira M., Hussein, A., Haikel, M. A., and El-Masry, M. A. (1998). Effect of some preceding crops, hill spacing and nitrogen fertilization on yield attributes and grain yield of maize under reclaimed sandy soil conditions in East Delta. Proc. 8th Conf. Agron. (pp. 174-181). Suez Canal Univ., Ismailia, Egypt, 28-29 Nov.
- Sendecor, G.W. and W.G. Cochran (1980). "Statistical Methods" 7th Ed., Iowa State Univ. Press, Amr., USA, pp. 255-269.
- Sharif, M., Khattak, R. A., and Sarrir, M. S. (2002). Effect of different levels of lignitic coal derived HA on growth of maize plants. Commun. in Soil Sci. and Plants Anal (pp. 19-20).
- Singh, R. P. (1985). Prospects and problems of N and P top dressing in wheat. Paper presented at 24th workshop. All India Wheat Research Workers, held at G.B. Pantnagar Univ. Agril. Tech.
- Steinbach, H. S., Alvarez, R. and Valentz, C. R. (2004). Balance between mineralization and immobization of nitrogen as affected by soil mineral nitrogen level. Agrochemica 48 : 204-212.
- Tahir, M. M., Khurshid, M., Khan, M. Z., Abbasi, M. K., & Kazmi, M. H. (2011). Lignite-derived humic acid effect on growth of wheat plants in different soils. *Pedosphere*, 21(1), 124-131. http://dx.doi.org/10.1016/S1002-0160(10)60087-2.

- Tan, K.G., (1998). Principles of Soil Chemistry. Mancel Dekker. New York. Varanini, Z, Pinton R. 2001.
 Direct versus indirect effects of soil humic substances on plant growth and nutrition. In: Pinton R, Varanini Z, Nannipieri P, Eds. The Rhizosphere. Basel, Nannipieri P, Eds. The Rhizosphere. Basel.
- Thenmozhi, S., Natarajan, S. and Selvakumari, G. (2004). Effect of Humic Acid on Quality Parameters of Groundnut. *Crop Research*, 27, 210-213.
- Vanitha, K. and Mohandass, S. (2014). Effect of Humic Acid on Plant Growth Characters and Grain Yield of Drip Fertigated Aerobic Rice (*Oryza Sativa* L.). *The Bioscan*, 9, 45-50.

- Wiqar, A., Zahir. S., Farmanullah K., Shamsher A. and Wasiullah M., (2013). Maize yield and soil properties as influenced by integrated use of organic, inorganic and biofertilizers in a low fertility soil. Soil Science Society of Pakistan, Soil Environ. 32(2): 121-129.
- Wu, S.C., Z.H. Cao, Z.G. Li, K.C. Cheung and M.H. Wong. (2005).
 Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125 (1-2): 155-166.
- Zeidan, M. S., Amany, M. F., and El-Kramany, B. (2006). Effect of N-Fertilizer and Plant Density on Yield and Quality of Maize in Sandy Soil. Res. J. Agric. Biol. Sci., 2(4), 156-161.

استخدام بعض الأسمدة العضوية والحيوية كإحلال جزئي للتسميد النيتروجيني المعدني للذرة ١ – التأثير على كمية المحصول، النيتروجين والفوسفور والبوتاسيوم الممتص في الحبوب. محمد أحمد عبد الظاهر ، إبراهيم ذا النوني إبراهيم ، فتحي عبد السلام خليل ، وجيه سيد محمد ' نقسم الأراضي والمياه -كلية الزراعة – جامعة المنيا معهد بحوث الأراضي والمياه والبيئة – مركز البحوث الزراعية – الجيزة

الملخص

أقيمت تجربة حقلية بمحطة بحوث جزيرة شندويل – محافظة سوهاج خلال كل موسم من المواسم الصيفية ٢٠١٤ ، ٢٠١٥ . وقد استهدفت هذه الدراسة استخدام بعض الأسمدة العصوية والحيوية كإحلال جزئي للتسميد النيتروجينى المعدني للذرة الشامية (300 TWC) وتأثيرها على كمية المحصول، النيتروجين والفوسفور والبوتاسيوم الممتص ، ومحتوى الحبوب من البروتين. وقد زرعت هذه التجارب في أرض طينية سلتيه ذات رقم PH كما أنها تحتوى على ١,٢٧ % من المادة العصوية. وقد صممت هذه التجارب في قطع منشقة مرتين في أربع مكررات وبمجموع معاملات ٢٧ معاملة. حيث أضيف التسميد النيتروجينى المعدني في العطع الرئيسية (٦٠ ، ٩٠ % معاملات ٢٧ معاملة. حيث أضيف التسميد النيتروجينى المعدني في القطع الرئيسية (٦٠ ، ٩٠ % أسمدة عضوية أو حيوية ، ١٠ م^٦ /فدان سماد الدينة والحيوية في القطع الرئيسية (معاون أسمدة عضوية أو حيوية ، ١٠ م^٦ /فدان سماد بلدي ، المخصب الحيوي الميكروبين) ، كما وضع الرش بالأحماض الدبالية في القطع المنشقة الثانية (الرش بالماء ، الرش بحمض الهيوميك ، الرش بحمض الفولفيك).

وقد أوضحت النتائج ما يلى :

أن إضافة السماد النيتروجينى المعدني بمعدل ٩٠ كجم ن/فدان ، ١٢٠ كجم ن/فدان قـد أعطـى زيادة معنوية متدرجة لمحصول الحبوب ، النيتروجين و الفوسفور و البوتاسيوم الممتص في حبـوب الذرة الشامية ، و المحتوى الكلى للبروتين مقارنة بالكنترول ٦٠ كجم ن/فدان . وقد كانت أعلى قيمة لمحصول الحبوب (٢٠,٦٤٢ أردب/فدان) عند إضافة ٩٠ كجم ن/فدان ، بينما كانـت أعلى قيمة أعلى قيم للنيتروجين الممتص في حبـوب محصول الحبوب (٢٠,٦٤٢ أردب/فدان) عند إضافة ٩٠ كجم ن/فدان ، بينما كانـت أعلى قيمة أعلى قيم للنيتروجين الممتص في الحبوب (٢٠,٦٤٢ أردب/فدان) عند إضافة ٩٠ كجم ن/فدان، بينما كانـت أعلى قيم للنيتروجين الممتص في الحبوب (٢٠,٣٩٢ ، ٢٠,٠٤٢ أردب/فدان) عند إضافة ٩٠ كجم ن/فدان، بينما كانـت أعلى قيم أعلى قيم للنيتروجين الممتص في الحبوب (٢٠,٠٤٢ ، ٢٠,٠٤٢ كجم/فدان) و الفوسفور (١٧,٠٣٩ ، ١٧,٠٣٩ في أعلى قيمة لمحتوى البروتين مقار أعلى قيم النيتروجين الممتص في الحبوب (٢٠,٠٤٢ ، ٢٠,٠٤٢ كجم/فدان) و الفوسفور (١٧,٠٣٩ في العبوب (١٠,٠٤٠ ، ٢٠,٠٤٢ ، ٢٠,٠٤٢ كجم/فدان) و الفوسفور (١٧,٠٣٩ في العروتين ما محتوى البروتين معار العلى قيم النيتروجين الممتص في الحبوب (٢٠,٠٤٠ ، ٢٠,٠٤٠ كجم/فدان) و الفوسفور (١٧,٠٣٩ في العلى قيم النيتروجين الممتص في الحبوب (٢٠,٠٤٠ ، ٢٠,٠٤٠ كجم/فدان) و الفوسفور (١٧,٠٣٩ كم في العروتين ما العروتين ما المروتين ما العلى قيمة لمحتوى البروتين ما المروتين ما المروتين الموسـمين علـي.

 وجد أيضا أن إضافة السماد العضوي والحيوي (١٠ م⁷/فدان ، الميكروبين) قد أدت إلـــى زيــادة معنوية في محصول الحبوب ، النيتروجين والفوسفور والبوتاسيوم الممتص في الحبوب ، والمحتوى الكلى للبروتين مقارنة بالكنترول (بدون إضافة أسمدة عضوية أو حيوية) للموسمين.

وقد وجد أيضا أن الرش بالأحماض الدبالية (الهيوميك ، الفولفيك) أدى إلى زيادة معنوية لكل من محصول الحبوب ، النيتروجين والفوسفور والبوتاسيوم الممتص في الحبوب ، والمحتوى الكليى للبروتين. وقد كانت أعلى القيم المتحصل عليها للصفات تحت الدراسة عند الرش بحمض الهيوميك لمواسم ٢٠١٤ ، ٢٠١٥ فيما عدا أعلى قيمة لمحتوى البروتين في الحبوب في الموب ٢٠١٥ كانت ناتجة من رش حمض الفولفيك.

وجد من نتائج الدراسة أن التفاعل بين العوامل المختلفة تحت الدراسة قد أدى إلى زيادة معنوية عالية لكل من محصول الحبوب ، النيتروجين و الفوسفور و البوتاسيوم الممتص في الحبوب ، و المحتوى الكلى للبروتين. وقد وجد أن أعلى محصول للحبوب (٢٩,٠٧٨ ، ٢٩,٧٣٥ أردب/فدان) عند إضافة ٩٠ كجم ن/فدان + ١٠ م⁷ فدان مع الرش بحمض الفولفيك وذلك خلال الموسمين ٢٠١٤ ، ٢٠١٥ على المضافة و فلك من النيتروجيني الكيماوى المضافق و فلي الموسمين الكيماوى المضافق و المعنوية و المعنوية معنوية و المحتوى الكلى البروتين. وقد وجد أن أعلى محصول للحبوب (٢٩,٠٧٨ ، ٢٩,٠٧٥ أردن) عند إضافة ٩٠ كجم ن/فدان + ١٠ م⁷ فدان مع الرش بحمض الفولفيك وذلك خلال الموسمين ٢٠١٤ ، ٢٠١٥ على الموالي الموسمين ٢٠١٤ الموسمين ٢٠١٤ المعنوية و المحتوى الكلى النيتروجيني الكيماوى المصافق و المعنوية المحصول المعنوية و المحتوى الكيماوى المحتوى الكيماوى المحتوى المعنوية و المعنوية المحصول الموسمين ٢٠١٤ المعنوية و المعنوية و المعنوية و المعنوية و الموالي الموسمين ٢٠١٤