Effect the Intercropping of Some Legume Crops and Spraying Glyphosate Herbicide on Control Orobanche crenata Forsk and Faba Bean Productivity

Asmaa A. Mohamed* and Bahy R. Bakheit
Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt.
* Correspondence: asmaa_ali@agi.aun.edu.eg
DOI: 10.21608/AJAS.2024.254407.1313
© Faculty of Agriculture, Assiut University

Abstract

This study was carried out at Assiut government on a farm naturally infested with Orobanche crenata during 2021/2022 and 2022/2023 seasons. The objectives of this recent study were to investigate the effect of intercropping some trap crops i.e; (Fenugreek, Lupine and Egyptian clover), spraying glyphosate and hand pulling on the control of controlling broomrape yield faba bean and its components. The results obtained revealed that intercropping treatments, spraying with glyphosate and hand pulling would help in reducing the infestation of Orobanche in faba bean. Consequently, the number of branches, number of pods and pod weight/plant of faba bean were significantly increased with intercropping with each of fenugreek, lupin and Egyptian clover. Seed yield /plot of faba bean cultivars increased with all broomrape control treatments. Misrl cultivar was associated with a decreased the number and dry weight of broomrape spikes $/ \mathrm{m}^{2}$ as 13.9 and 32.0% and by 24.5 and 37% in first and the second season compared with Giza 716 cultivar, respectively. The interaction between intercropping systems, glyphosate, hand pulling treatments and cultivars gave the highest reduction in the number and dry weight of broomrape in both seasons and increased the faba bean seed yield. Consequently, the economic return also increased. Both stepwise and simple regression analyses exerted that that the seed yield/plant was effective for seed yield/plot with contribution of $R^{2}=0.231$. Other traits were ranking after seed yield/plant..The remarkable obtained negative and highly significant correlation recorded between seed yield/plot and each of number of broomrape $/ \mathrm{m}^{2}\left(-0.828^{* *}\right.$ and $\left.-0.737^{* *}\right)$

Keywords: Faba bean, Intercropping with fenugreek, Lupine, Egyptian clover.

Introduction

Faba bean (Vicia faba, L.) is an essential legume used as a source of protein for both humans and animals. It has high capacity for nitrogen fixation as well as assisting the diversification of agro-ecosystems by indirectly boosting the associated diversity of wild fauna. The faba bean also serves an important agronomic function (Köpke and Nemecek, 2010). In 2021, the area of cultivated faba bean in Egypt reached about 26,382 ha ${ }^{-1}$, which produced about 105,052 ton
of dry seeds (FAO, 2021). Broomrapes (Orobanche crenata Forsk), a parasitic weed, is the most severe biotic stressor of faba bean, causing large production losses and occasionally totally eradicating the crop. As of now, no single control strategy is adequate to eradicate this parasite from this crop. Therefore, an effective management plan for broomrape eradication is required, which depended on using a combination of resistant cultivars, sensible chemical control techniques, and appropriate cultural practices (Eid et al., 2017). According to Kakahy et al. (2012), the differences among cultivars had a substantial impact on growth and seed yield. Additionally, according to EL-Metwally et al. (2013) and Ismail (2013), glyphosate spraying reduced broomrape by $96-99.1 \%$ and enhanced faba bean seed output. Moreover, a technique for encouraging concurrent crop production and soil fertility build up is intercropping. It is a low-cost method of broomrape management, as already used in some parts of Africa (Oswald et al., 2002 and ElSherbeni et al., 2021). According to Bakheit et al. (2002) and El-Sherbeni et al. (2021) certain crops including flax, fenugreek, lupin, and Egyptian clover were employed as trap or capture crops. The reduction in Orobanche crenata emerging spikes, reached 52% when intercropped with fenugreek (Abo-Shall and Raghe 2014). intercropping faba bean with each of lupin, fenugreek, and Egyptian clover significantly decreased faba bean. Orobanche crenata Forsk infestations, which in turn enhanced seed output and economic return (Bakheit et al. 2002). The goal of the current research was to measure how the Orobanche infestation could be affected by both intercropping faba bean cultivars with certain legume crops i.e; fenugreek, lupin, and Egyptian clover and using glyphosate herbicide. With the intention of raising farmers' non-farm income, the faba bean output and the crop's reaction to intercropping were taken into consideration. Furthermore, utilizing both correlation coefficient and stepwise regression analyses, to explore the contributions of yield attributes on the seed yield under these conditions were studied.

Materials and Methods

Two experiments were conducted during the winter growing seasons of 2021/2022 and 2022/2023 at Agronomy Department, Faculty of Agricultural, Assiut University, Egypt. Orobanche was naturally abundant and evenly distributed over the field. The experimental site's soil had a clay texture, an average pH of $7.8,44.2 \%$ saturation capacity, 1.62% organic nitrogen, 0.09% total nitrogen, and 1.2 parts per million of accessible phosphorus. In the first and second seasons, October $19^{\text {th }}$ and $20^{\text {th }}$ were sowing dates of trap crops and various varieties of faba beans, respectively. On one side of the ridge, two plants per hill with an interrow spacing of 60 cm and an interplant spacing of 10 cm were planted with faba bean seeds. On the other side of the ridge, the intercrops (Egyptian Clover, Fenugreek, or Lupin) were drilled in a randomized complete block design with three replications, using the indicated seeding rate at the same time as the main crop. Every experiment's treatments were set up using a split-plot design. The subplot measured $10.5 \mathrm{~m}^{2}$ and consisted of four rows spaced 60 cm apart and 3.5 m in length.

The treatments were arranged across the experimental units as follows:

A. Main plots

1. Solid faba bean without any treatment as untreated (control).
2. Solid faba bean +hand-pulling of Orobanche.
3. A faba bean +cv . Giza2 Lupine (Lupinus termis)
4. A fenugreek (Trigonella Foenum-graecum) cv. Giza2 combined with faba beans
5. A faba bean + Egyptian clover (Trifolium alexandrinum) cv. Helaly.
6. A Spraying faba beans with Round up 48% (glyphposate) at $3.6 \mathrm{~g} /$ feddan twice: once at the start of the flowering period and again 21 days apart.

B. The subplot (cultivars).

b1- Misr-1, b2- Giza 843, and b3- Giza 716.
At harvesting, a random sample of ten guarded faba bean plants per plot were used to measure the following: plant height, cm ; height of the first pod, cm ; number of branches/ plant and number of pods/plant. Additionally, each plot's plants were observed to exhibit the following characteristics for the primary crop's seed yield/plot; 100 seed weight; Orobanche spike dry weight $/ \mathrm{m}^{2}$ and number of Orobanche spikes $/ \mathrm{m}^{2}$. Additionally, the intercrops' seed output was noted.

Statistical analysis

A. Data analysis

For every season, the gathered data were properly statistically analyzed using the split-plot design method as described by Gomez and Gomez (1984). L.S.D. was used for the mean comparisons at the 5% probability level. Moreover, as done by Samadzadeh et al. (2013), The determination of the economic return for each treatment was determined on yield of each treatment and used the official prices of these crops according to the Ministry of Agriculture, Cairo, Egypt 2021

B- Simple, partial and stepwise regression analyses

Simple, partial and stepwise regression analyses were run out to reveal the importance of the dependent variables among the studied traits affecting the seed yield/plot in the all obtained 18 intercropping and cultivars of faba been. All regressions analyses were done as by Naser and Leilah (1993), Shafshak et al,1995 and Samadzadeh et al., (2013).

C- Correlation coefficient analysis

The phenotypic correlation coefficients were calculated between each pairs of the studied traits as outlined by Walker (1960).

Results and Discussions

1. Analysis of variance

The mean squares of the interaction between intercropping treatments and faba bean cultivars was significant or highly significant in both sowing seasons for studied traits, except for plant height and seed yield/plot in both seasons, 100 -seed weight in first season and number of broomrape $/ \mathrm{m}^{2}$ in second season (Table 1). These results might explore the effect of the intercropping systems and faba bean cultivars and monitored how these factors affected each other. Consequently, care must be taken when sowing these cultivars of faba bean under different intercropping system, as well as, when spraying the glyphosate to control the broomrape under such conditions. Moreover, the treatments of intercropping and glyphosate spraying were significant or highly significant for all studied traits in both seasons. At the same time, faba bean cultivars were significant or highly significantly differed for all studied traits in both sowing seasons, except for, plant height, number of branches/plant and seed yield/plot in both sowing seasons and seed yield/plant in first sowing season. These results illustrated how faba bean genotypes differed in their performance for different traits under various intercropping and glyphosate spraying to control the broomrape. These results are in line with those reported by Bakheit et al (2002), Briache et al (2019) and ElSherbeni et al (2021).
Table 1. Analysis of variance of the studied traits for intercropping system and spray glyphosate across the two sowing seasons.

Traits	Source of variations									
	Intercropping (In)		Error(a)		Cultivars (C)		S* C		Error(b)	
	$\begin{gathered} \hline 2021 \\ / 2022 \end{gathered}$	$\begin{gathered} \hline 2022 \\ / 2023 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2021 \\ / 2022 \end{gathered}$	$\begin{gathered} 2022 \\ / 2023 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2021 \\ / 2022 \end{gathered}$	$\begin{gathered} \hline 2022 \\ / 2023 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2021 \\ / 2022 \end{gathered}$	$\begin{gathered} 2022 \\ / 2023 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2021 / \\ & 2022 \end{aligned}$	$\begin{gathered} \hline 2022 \\ / 2023 \end{gathered}$
D.F	5		10		2		10		24	
Plant height (cm)	419.21**	105.80**	17.10	23.86	15.15	81.24	54.18	83.55	38.87	40.21
Number of branches/plant	2.13 **	$0.56{ }^{*}$	0.16	0.16	0.25	0.23	0.46*	$0.81{ }^{* *}$	0.12	0.15
Height to first pod (cm)	133.52**	$113.88^{* *}$	3.95	4.32	$117.78{ }^{* *}$	89.08**	$53.83 * *$	$103.59^{* *}$	7.52	3.53
Number of pods/plant	$60.41^{* *}$	15.95**	1.96	0.38	$117.98^{* *}$	20.74 **	16.92 **	$6.31{ }^{* *}$	3.14	0.59
Pods to Weight /plant	218.63**	124.22*	7.79	33.01	$198.65{ }^{* *}$	$145.36^{* *}$	63.51 **	$66.28^{* *}$	10.47	15.08
Seed yield/plant (g)	$439.21^{* *}$	78.75**	20.14	9.33	9.64	$31.68{ }^{*}$	195.75**	44.44**	18.29	9.11
Seed yield (kg/plot).	$3.18{ }^{* *}$	$2.82 * *$	0.05	0.05	0.06	0.15	0.19	0.11	0.15	0.05
100-seed weight (g)	100.61 **	79.74**	15.44	26.77	$515.98{ }^{* *}$	526.79**	26.31	39.33*	22.93	14.24
Number of broomrape/m \mathbf{m}^{2}	45.41**	10.19*	0.49	3.19	$1.24 * *$	$27.35^{* *}$	$0.62^{* *}$	2.49	0.11	1.21
Broomrape dry weight/ (g/m ${ }^{\mathbf{2}}$)	7685.56**	1861.77	48.86	815.74	$743.93 * *$	$7418.99^{* *}$	307.61**	689.32*	42.88	261.09

Effect of intercropping system, glyphosate and pulling treatment on faba bean yield and its components

The results in Table 2 revealed that, the intercropping system, glyphosate spraying and pulling significantly decreased the numbers and dry weight of broomrape $/ \mathrm{m}^{2}$ in both seasons compared with untreated (control). The percentage of reduction across treatments in controlling of broomrape $/ \mathrm{m}^{2}$ ranged between 75.20 to 78.53 with an average of 56.17% and between 12.50 to 37.50 with an
average of 19.63% in $2021 / 2022$ and 2022/2023, respectively. The highest values were recorded with the treatments of faba bean with Lupine and glyphosate spraying in 2021/2022 and 2022/2023 seasons, respectively. Concerning to dry weight of broomrape $/ \mathrm{m}^{2}$, the reduction percentage varied between 51.24 to 79.68 with as average of 54.45 and between 6.19 to 34.02 with an average of 16.89% in 2021/2022 and 2022/2023 seasons, respectively. Moreover, the highest values of the duction in dry weight of broomrape $/ \mathrm{m}^{2}$ resulted from intercropping of faba bean with Lupine and glyphosate spraying in 2021/2022 and 2022/2023 seasons, respectively. This means that intercropping treatments, spraying with glyphosate and pulling would help to reduce the infestation of Orobanche in the faba bean crop. Consequently, the number of branches, number of pods/plant, pods weight/plant were significantly increased with the intercropping of faba bean with each of fenugreek, lupine, Egyptian clover, and spraying with glyphosate, as well as pulling treatment, when compared with no pulling in both seasons. All broomrape control treatments and trap crops gave high values of number of branch/plant, numbers of pods/plant, pods weight/plant, seed yield/plot and 100 seed weight and retunes than untreated check treatment in both seasons (Table 2). Seed yield/plot of faba bean cultivars increased by all broomrape control treatments. The highest values of seed yield were obtained when the faba bean cultivars coupled with fenugreek and lupine in the first and second seasons which recorded 171.23 and 246.58% in the first season and 212.68 and 205.63% in the second season compared to untreated treatment (no pulling), respectively (Table 2).

The decrease in Orobanche infestation Table 2 by planting fenugreek or lupine may be due to the fact that these plants secrete some chemical which inhibit the germination of Orobanche seeds or prevent the infestation of faba bean by Orobanche. Also, may be due to the growth of these crops, which covers the soil surface and prevents light and others environmental factors required for the germination of Orobanche from reaching the weed. These results are in agreement with those obtained by Al-Menoufi (1991) and El-Sherbeni et al (2021)

Effect of Cultivars

The results in Table 2 exhibited that the three tested faba bean cultivars were significantly different in their rate of infestation represented by the number of broomrape spikes $/ \mathrm{m}^{2}$ and broomrape dry weight $/ \mathrm{m}^{2}$, As well as the height of the first pod, number of pods/plant, pods weight/plant, seed yield and 100 seed weight in both seasons. Misr 1 cultivar decreased the number and dry weight of broomrape spikes $/ \mathrm{m}^{2}$ by 13.85 and 31.99% and by 24.30 and 37.50% in first and second seasons as compared with faba bean Giza 716 cultivar, respectively. The results might be due to the death of broomrape plants effected by Misr 1 plant due to of penetration of the hauls, mechanical barriers formation or inhibition of broomrape seed germination by chemicals and substances released by root. The obtained results are in line with those found by Briache et al (2019) and El-Sherbeni et al (2021). Also, Eid et al (2017) whose found that using the best control package for growing faba bean in sand soil infested with broomrape is by planting Misr 3 or

Giza 843 cultivars during November along with spray of glyphosate. Moreover, the data in Table 2 showed that the faba bean Giza 843 recorded the highest values of number of pods/ plant, pod weight/ plant. seed yield/ plant and seed yield/plot in both seasons.

Table 2. Effect of intercropping systems and herbicide treatments on faba bean yield and its components of faba bean in 2021/2022 and 2022/2023 seasons.

	Plant height (cm)								Number of branches/plant							
	$2021 \backslash 2022$				$2022 \backslash 2023$				202112022				$2022 \backslash 2023$			
	$\begin{gathered} \text { Misr } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { Giza } \\ \mathbf{8 4 3} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	Means	$\begin{gathered} \text { Misr } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 843 \\ \hline \end{gathered}$	$\begin{gathered} \text { Giza } \\ 716 \\ \hline \end{gathered}$	Mean	$\begin{gathered} \text { Misr } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { Giza } \\ 843 \\ \hline \end{gathered}$	$\begin{gathered} \text { Giza } \\ 716 \\ \hline \end{gathered}$	Means	$\begin{gathered} \hline \text { Misr } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { Giza } \\ 843 \\ \hline \end{gathered}$	$\begin{gathered} \text { Giza } \\ 716 \\ \hline \end{gathered}$	Mean
Fb no pullnig	101.00	104.33	112.67	106.00	94.47	91.05	95.91	93.81	2.48	2.00	2.80	2.43	4.24	4.07	3.48	3.93
Fb with pulling	107.13	108.13	108.33	107.86	99.52	86.13	82.83	89.49	3.07	3.40	3.33	3.27	3.87	4.35	3.90	4.04
$\mathbf{F b}+\mathrm{F}$	97.00	90.92	90.33	92.75	82.37	91.20	90.47	88.01	2.80	2.37	2.53	2.57	4.00	4.84	4.00	4.28
$\mathbf{F b + L}$	90.00	95.00	96.42	93.81	95.20	97.05	91.91	94.72	2.97	4.00	3.13	3.37	3.90	3.07	4.33	3.77
Fb+E	92.50	94.20	91.67	92.79	95.33	103.07	792.73	97.04	2.95	2.67	3.27	2.96	3.87	3.47	3.99	3.78
Fb+Gly	99.67	105.67	94.33	99.89	92.88	94.33	85.53	90.91	3.20	4.13	3.73	3.69	3.87	5.13	4.07	4.36
Mean	97.88	99.71	98.96	98.85	93.30	93.81	89.90	92.33	2.91	3.10	3.13	3.05	3.96	4.16	3.96	4.03
$\begin{gathered} \hline \text { LSD } \\ 0.05 \text { In } \end{gathered}$	4.34				5.13				0.43				0.42			
$\begin{gathered} \hline \text { LSD } \\ 0.05 \mathrm{C} \\ \hline \end{gathered}$	N.S															
$\begin{gathered} \hline \text { LSD } \\ 0.05 \text { In*C } \end{gathered}$	N.S				N.S				0.57				0.65			
Cultivar	Height to first pod (cm)								Number of pods/plant							
	$2021 \backslash 2022$				$2022 \backslash 2023$				202112022				$2022 \backslash 2023$			
Intercrop	$\begin{gathered} \hline \text { Misr } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 843 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	Means	$\begin{gathered} \text { Misr } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 843 \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	Mean	$\begin{gathered} \hline \text { Misr } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 843 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	Means	$\begin{gathered} \hline \text { Misr } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 843 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	Mean
Fb no pullnig	34.57	35.00	45.67	38.41	27.33	22.04	39.70	29.69	9.03	12.00	8.87	9.97	5.83	8.73	6.37	6.98
Fb with pulling	32.47	32.47	31.33	32.09	23.17	16.33	28.28	22.59	16.60	16.53	11.53	14.89	7.67	10.61	6.17	8.15
$\mathrm{Fb}+\mathrm{F}$	30.53	39.33	33.80	34.55	29.64	33.00	27.33	29.99	14.33	11.09	10.20	11.87	8.47	6.48	6.53	7.16
$\mathrm{Fb}+\mathrm{L}$	27.83	25.40	35.47	29.57	38.67	25.30	33.71	32.56	15.97	22.60	10.50	16.36	7.37	6.00	6.90	6.76
$\mathrm{Fb}+\mathbf{E}$	29.67	39.33	31.80	33.60	32.73	33.67	28.98	31.79	14.17	12.58	10.00	12.25	7.13	9.67	7.70	8.17
Fb+Gly	24.47	26.00	32.00	27.49	24.67	33.67	32.67	30.34	18.93	16.73	12.67	16.11	9.13	13.27	8.67	10.36
Mean	29.92	32.92	35.01	32.62	29.37	27.34	31.78	29.49	14.84	15.26	10.63	13.57	7.60	9.13	7.06	7.93
$\begin{gathered} \text { LSD } \\ 0.05 \text { In } \end{gathered}$	2.08				2.18				1.46				0.65			
$\begin{gathered} \hline \text { LSD } \\ 0.05 \mathrm{C} \\ \hline \end{gathered}$	1.89				1.29				1.22				0.53			
$\begin{gathered} \hline \text { LSD } \\ 0.05 \text { In*C } \end{gathered}$	4.61				3.21				2.98				1.30			
Cultivar	Pods Weight /plant								Seed yield/plant (g)							
	$2021 \backslash 2022$				$2022 \backslash 2023$				202112022				$2022 \backslash 2023$			
Intercrop	$\begin{gathered} \hline \text { Misr } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ \mathbf{8 4 3} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	Means	$\begin{gathered} \text { Misr } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 843 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	Mean	$\begin{gathered} \hline \text { Misr } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 843 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	Means	$\begin{gathered} \hline \text { Misr } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { Giza } \\ 843 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	Mean
Fb no pullnig	34.34	35.33	29.32	33.00	30.51	33.34	24.35	29.40	28.36	44.11	24.02	32.16	28.13	32.00	26.76	28.96
Fb with pulling	42.33	47.42	41.48	43.70	36.84	36.94	30.83	34.87	33.89	37.98	47.37	50.77	34.12	34.54	38.28	35.65
Fb+F	27.95	34.18	31.87	31.30	28.18	32.04	30.38	30.20	35.37	35.87	46.07	39.10	31.49	28.51	28.19	29.40
Fb+L	35.74	52.77	32.11	40.20	32.21	47.38	32.31	37.30	51.77	54.30	46.24	39.75	39.31	40.93	26.75	35.66
$\mathbf{F b + E}$	36.98	38.85	42.93	39.60	30.97	37.29	40.36	36.21	50.40	30.32	34.84	38.52	34.63	30.11	31.08	31.94
Fb+Gly	43.01	43.60	37.73	41.50	43.06	38.02	33.54	38.21	31.45	33.63	28.91	31.33	29.12	31.46	32.33	30.97
Mean	36.73	42.03	35.91	38.20	33.63	37.50	31.96	34.36	38.54	39.37	37.91	38.61	32.80	32.93	30.57	32.10
LSD	2.93				6.03				4.71				3.21			
0.05 In	2.22				2.67				N.S				2.07			
LSD	5.44				6.53				7.19				5.16			

N. $\mathrm{S}=$ non-significant; Fb no pullnig: Faba bean without pulling; Fb with pulling: Faba bean with pulling; $\mathrm{Fb}+\mathrm{F}$: Faba bean + fenugreek; $\mathrm{Fb}+\mathrm{L}$: Faba bean + Lupines; $\mathrm{Fb}+\mathrm{E}$: Faba bean + Egyptian clover; $\mathrm{Fb}+\mathrm{Gly}$: faba bean spraying with glyphosate.

Effect the Intercropping of Some Legume Crops and...
Table 2. Continued.

Gultivar	Seed yield (kg/plot).								100-seed weight (g)							
	$2021 \backslash 2022$				$2022 \backslash 2023$				$2021 \backslash 2022$				$2022 \backslash 2023$			
Intercrop	$\begin{gathered} \hline \text { Misr } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 843 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	Mean	$\begin{gathered} \hline \text { Misr } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ \mathbf{8 4 3} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	Mean	$\begin{gathered} \hline \text { Misr } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 843 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	$\begin{gathered} \text { Mean } \\ \mathbf{s} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Misr } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 843 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	Mean
Fb no pullnig	0.80	0.86	0.53	0.73	0.89	0.74	0.51	0.71	69.50	67.34	78.11	71.65	69.50	63.54	78.76	70.60
Fb with pulling	1.69	1.69	1.68	1.69	1.58	1.39	1.59	1.52	68.92	78.99	84.77	77.56	66.72	76.81	83.62	75.72
Fb+F	1.87	2.01	2.07	1.98	2.25	2.32	2.08	2.22	68.17	68.60	80.44	72.40	68.00	68.00	77.32	71.11
$\mathrm{Fb}+\mathrm{L}$	2.04	2.86	2.68	2.53	1.91	2.42	2.18	2.17	69.56	78.44	77.59	75.20	68.33	76.57	81.43	75.44
$\mathbf{F b + E}$	1.78	1.72	1.28	1.59	1.93	1.66	1.32	1.64	75.25	80.70	84.91	80.29	74.44	80.29	79.75	78.16
Fb+Gly	1.50	1.21	1.61	1.44	1.34	1.40	1.30	1.34	68.34	73.15	77.97	73.15	67.22	72.92	77.57	72.57
Mean	1.61	1.73	1.64	1.66	1.65	1.66	1.50	1.60	69.96	74.54	80.63	75.04	69.04	73.02	79.74	73.93
LSD	0.22				0.23				4.13				5.43			
0.05 In	N.S				N.S				3.29				2.59			
LSD	N.S				N.S				N.S				6.35			
	Number of broomrape $/ \mathrm{m}^{2}$								Broomrape dry weight/ (g/m $\mathbf{m}^{\mathbf{2}}$)							
	2021\2022				2022\2023				2021\2022				$2022 \backslash 2023$			
	$\begin{gathered} \hline \text { Misr } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ \mathbf{8 4 3} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	Mean	$\begin{gathered} \hline \text { Misr } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 843 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	Mean	$\begin{gathered} \text { Misr } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ \mathbf{8 4 3} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	Means	$\begin{gathered} \text { Misr } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 843 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Giza } \\ 716 \\ \hline \end{gathered}$	Mean
Fb no pullnig	7.33	7.67	8.33	7.78	5.00	10.00	9.00	8.00	81.08	97.94	123.65	100.89	55.71	128.46	132.57	105.58
Fb with pulling	3.33	3.33	3.33	3.33	5.00	7.00	8.00	6.67	53.75	45.57	48.25	49.19	82.37	96.89	117.86	99.04
$\mathbf{F b}+\mathrm{F}$	1.00	2.00	2.33	1.78	6.00	7.00	8.00	7.00	14.21	20.93	32.39	22.51	84.64	73.18	112.65	90.16
$\mathbf{F b}+\mathrm{L}$	1.67	2.33	1.00	1.67	4.67	6.00	6.00	5.56	19.64	27.58	14.28	20.5	60.48	69.94	85.39	71.94
$\mathbf{F b + E}$	2.67	3.00	3.33	3.00	5.67	5.67	7.67	6.33	29.35	46.88	50.34	42.19	64.83	88.17	117.4	90.13
Fb+Gly	2.67	2.67	3.33	2.89	4.00	5.00	6.00	5.00	39.82	35.58	46.06	40.49	57.98	67.27	83.72	69.66
Mean	3.11	3.50	3.61	3.41	5.06	6.78	7.44	6.43	39.64	45.75	52.5	45.96	67.67	87.32	108.27	87.75
$\begin{gathered} \hline \text { LSD } \\ 0.05 \text { In } \end{gathered}$	0.73				1.87				7.34				N.S			
$\begin{gathered} \text { LSD } \\ 0.05 \mathrm{C} \end{gathered}$	0.23				0.76				4.50				11.12			
$\begin{gathered} \text { LSD } \\ \mathbf{0 . 0 5} \\ \text { In*C } \\ \hline \end{gathered}$	0.56				N.S				11.01				27.18			

N. $\mathrm{S}=$ non-significant; Fb no pullnig: Faba bean without pulling; Fb with pulling: Faba bean with pulling; $\mathrm{Fb}+\mathrm{F}$: Faba bean + fenugreek; Fb+L: Faba bean + Lupines; $\mathrm{Fb}+\mathrm{E}$: Faba bean + Egyptian clover; $\mathrm{Fb}+\mathrm{Gly}$: faba bean spraying with glyphosate.

Effect of the interaction between intercropping system, glyphosate spraying, pulling treatments and faba bean cultivars

The interaction between broomrape control treatments and cultivars increased most of yield and its components in both seasons as shown in (Table 2). Faba bean Giza 843 cultivar recorded the highest values of most studied traits in both seasons as complained with Giza 716. Meanwhile, the interaction between fab bean Giza 843 cultivar and lupine gave the highest values (2.86 and 2.42) followed by fenugreek (2.01 and 2.32 kg) of seed yield/plot in first and second seasons, respectively. The heaviest 100 -seeds of faba bean were obtained under hand pulling on Giza 716 cultivar with as average of 84.91 with Egyptian clover and 83.62 g with pulling in first and second seasons, respectively. These results are in agreement with those reported by Briache et al (2014) and Eid et al (2017). In addition, the data in Table 2 showed that the interaction between intercropping system, glyphosate, pulling treatment and cultivars gave the highest reduction in the numbers of broomrape spike $/ \mathrm{m}^{2}$ and dry weight of broomrape $/ \mathrm{m}^{2}$ in both seasons. The highest reduction was recorded with using faba bean with fenugreek
for the numbers of broomrape $/ \mathrm{m}^{2}$ obtained by the interaction between faba bean Misrl and Giza 843 cultivars in first season and using glyphosate spraying in second season.

The economic return

The determination of the economic return for the studied treatments in each intercropping system, spraying glyphosate and pulling and for faba bean planted alone were recorded in Table 3. The data revealed that the economic return increased when intercropping faba bean with lupine, fenugreek or Egyptian clover. It was clear that the superiority of intercropping lupine or fenugreek with faba bean was affected by the rate of Orobanche infestation.
Table 3. Economic returns from intercropping systems Fenugreek, Lupine and Egyptian clover and glyphosate spraying of faba bean with glyphosate. under natural soil infestation with Orobanche

		Treatments					
		Fb no pulling	Fb with pulling	$\mathrm{Fb}+\mathrm{F}$	$\mathrm{Fb}+\mathrm{L}$	$\mathrm{Fb}+\mathrm{E}$	Fb+Gly
Seed yield of faba bean (kg/fad)	2021-2022	306.6	709.8	831.6	1062.6	667.8	604.8
	2022-2023	298.02	638.4	932.4	911.4	688.8	562.8
Seed yield of intercrop ($\mathbf{k g} /$ fad)	2021-2022	---------	---------	403.2	205.8	10710	---------
	2022-2023	---------	---------	474.6	109.2	11667	--
Revenue (L.E/fad)	2021-2022	3955	9156	10727+5604	13707+3910	$8614+2225$	7802
	2022-2023	3847	8235	12022+6596	$11757+2075$	$8885+2424$	7260

$\overline{\mathrm{Fb}}$ no pullnig: Faba bean without pulling; Fb with pulling: Faba bean with pulling; $\mathrm{Fb}+\mathrm{F}$: Faba bean + fenugreek; $\mathrm{Fb}+\mathrm{L}$: Faba bean + Lupines; $\mathrm{Fb}+\mathrm{E}$: Faba bean + Egyptian clover; $\mathrm{Fb}+\mathrm{Gly}$: faba bean spraying with glyphosate. The official price for these crops was calculated according to the Ministry of Agriculture, Cairo, Egypt, 2021.

Simple, partial and stepwise regression analyses

Simple, partial and stepwise regression analyses were running for the obtained 18 intercropping and cultivars of faba been applying one dependent trait i.e., seed yield/plot and all other studies were used as independent traits as presented in Table 4

a-Simple, partial and stepwise regression analyses

The stepwise regression analysis for dependent trait of seed yield/plot was expressed one fitted model i.e., Model 1 who has only one independent trait (seed yield/plant) of seed yield/plot which gave $\mathrm{R}^{2}=0.231$. Furthermore, the simple regression analysis, which included one trait as independent trait and one dependent trait i.e. seed yield/plot, revealed that the highest three independent traits for their contributions into seed yield/plot in ranking were seed yield/plant (Model 1, as exerted in stepwise regression), plant height (Model 2) and height of first pod (Model 4) were recorded R^{2} values of $0.231,0.226$ and 0.208 , respectively (Table 4). Moreover, the partial regression analysis which included two from the three previous independent traits increased the contributing into the seed yield/plot as plant height and seed yield/plant (Model 8), and plant height and height of first pod and seed yield/plant (Model 9) and plant height and height of the first pod (Model 10) with R^{2} in ranking of $0.360,0.353$ and 0.269 , respectively. It is
remarkable result that the partial regression analysis included that previous best three independent traits i.e plant height, height of first pod and seed yield/plant (Model 11) increased their combine contribution into seed yield/plot to $\mathrm{R}^{2}=0.370$. This is logical result that the model 11 included the genetic make-up of the three traits that contributed to seed yield/plot.

b-Expected and actual values comparison

The actual and expected seed yield/plot under all treatments which out yielded from all the regression fitted models were presented according to their regression equations in Table 5. The expected seed yield/plot for the obtained fitted model were insignificant difference comparing to the actual seed yield/plot into the all models of regressions analyses as revealed by values of t-test, which were less than unity in all models (Table 5). Moreover, the estimates of correlation coefficients (r) between the expected and actual seed yield were positive and high, which ranged from 0.481 (Model 1) to 0.609 (Model 11). These results displayed the effeteness of stepwise and other regression analyses to determine the strongest traits through their genetic contribution into high seed yield of faba bean.

Table 4. Stepwise, simple and partial regression analyses for contributions of studied traits into seed yield weight/plot

Regression	Model	Traits	r^{2}	Regression equations for expected WSPP
*, **	1	Seed yield/plant (g)	0.231	$\hat{\mathrm{Y}}=3.133-0.043$ Seed yield/plant (g)
**	2	Plant height (cm)	0.226	$\hat{\mathrm{Y}}=7.671-0.063$ Plant height (cm)
	3	Number of branches/plant	0.055	$\hat{\mathrm{Y}}=0.345+0.364 \text { Number of }$ branches/plant
	4	Height to first pod (cm)	0.208	$\hat{\mathrm{Y}}=7.646-0.121$ Height to first pod (cm)
	5	Number of pods/plant	0.051	$\hat{\mathrm{Y}}=1.055+0.054$ Number of pods/plant
	6	Pods to Weight /plant	0.051	$\hat{\mathrm{Y}}=0.851+0.022$ Pods to Weight /plant
	7	100-seed weight (g)	0.006	$\hat{\mathrm{Y}}=1.075+0.007$ 100-seed weight (g)
***	8	Plant height (cm) + Seed yield/plant (g)	0.36	$\begin{gathered} \hat{\mathrm{Y}}=7.563-0.049 \text { Plant height }(\mathbf{c m})-0.34 \\ \text { Seed yield/plant }(\mathbf{g}) \end{gathered}$
	9	Height to first pod (cm)+ Seed yield/plant (g)	0.353	$\hat{\mathrm{Y}}=7.620-0.096$ Height to first pod (cm) 0.350 Seed yield/plant (g)
	10	Plant height (cm)+ Height to first pod (cm) +	0.269	$\begin{gathered} \hat{\mathrm{Y}}=6.387-0.380 \text { Plant height }(\mathrm{cm})+0.638 \\ \text { Height to first pod }(\mathrm{cm}) \end{gathered}$
	11	Plant height (cm) + Height to first pod (cm) + Seed yield/plant (g)	0.370	$\hat{\mathrm{Y}}=6.928-0.210 \text { Plant height }(\mathbf{c m})+0.320$ Height to first pod (cm) - 0.031 Seed yield/plant (g)

[^0]Table 5. Actual and expected seed yield/plot obtained through the simple, partial and stepwise regression analyses

System	Cult.	Actual Seed yield /plot.kg	Expected seed yield/plot						
			Seed yield/plant, g (Model 1)	Plant height, cm (model 2)	Height to first pod, cm (Model 4)	Plant height, cm + Seed yield/plant, g (Model 8)	$\begin{gathered} \text { Height to first pod, } \\ \mathbf{c m} \\ \text { + Seed yield/plant, } \\ \mathbf{g} \\ \text { (Model 9) } \\ \hline \end{gathered}$	Plant height, cm + Height to first pod, cm (Model 10)	```Plant height, cm + Height to first pod, cm + Seed yield/plant, \(g\) (Model 11)```
Fb no pulling	Misr 1	0.85	1.17	1.51	1.53	1.23	1.18	1.47	1.15
	Giza843	0.64	1.09	1.52	1.55	1.16	1.11	1.42	1.07
	Giza716	0.69	1.56	1.10	1.15	1.21	1.18	1.03	1.08
Fb with pulling	Misr1	1.64	1.67	1.16	1.17	1.34	1.29	1.27	1.30
	Giza843	1.54	1.58	1.55	1.55	1.58	1.52	1.62	1.53
	Giza716	1.64	1.29	1.57	1.56	1.36	1.29	1.69	1.36
Fb+F	Misr1	2.06	1.89	2.02	1.99	2.19	2.12	2.13	2.16
	Giza843	2.20	1.75	1.79	1.80	1.89	1.86	1.71	1.77
	Giza716	2.05	1.54	1.98	1.98	1.87	1.82	1.91	1.78
Fb+L	Misr1	1.98	1.92	1.80	1.82	2.03	2.01	1.66	1.87
	Giza843	2.55	1.50	1.62	1.60	1.56	1.49	1.79	1.58
	Giza716	2.52	2.04	1.74	1.72	2.09	2.03	1.83	2.03
$\mathbf{F b}+\mathbf{E}$	Misr1	1.86	1.30	1.75	1.77	1.52	1.47	1.68	1.43
	Giza843	1.47	1.83	1.46	1.48	1.70	1.67	1.41	1.58
	Giza716	1.52	1.72	1.86	1.85	1.92	1.87	1.92	1.88
Fb+Gly	Misr1	1.42	1.81	1.61	1.57	1.80	1.72	1.84	1.83
	Giza843	1.51	1.73	1.37	1.35	1.56	1.49	1.56	1.56
	Giza716	1.26	1.82	2.01	1.97	2.12	2.04	2.15	2.11
Average		1.63	1.62	1.63	1.63	1.67	1.62	1.67	1.61
r		-	0.481	0.476	0.456	0.601	0.595	0.519	0.609
t		-	0.948	0.976	0.975	0.686	0.929	0.712	0.884
r^{2}		-	0.231	0.226	0.208	0.360	0.353	0.269	0.370

Table 6. Phenotypic correlation coefficients between each pairs of studied traits under all treatments in both sowing seasons

	Season	Number of branches/plant	Height to first pod, cm	Number of pods/plant		Seed yield/plant, \mathbf{g}	100-seed weight, g	Seed yield /plot, kg	Number of broomrape $/ \mathbf{m}^{2}$	Broomrape dry weight, $\mathrm{g} / \mathrm{m}^{2}$
Plant height (cm)	$1{ }^{\text {st }}$	0.160	0.193	0.038	0.153	0.284	0.061	-0.451	0.565^{*}	$0.632^{* *}$
	$2^{\text {nd }}$	-0.306	0.271	0.234	0.306	-0.228	-0.179	-0.008	-0.263	-0.256
	Average	-0.66	$0.996^{* *}$	0.139	0.191	0.269	-0.057	-0.476*	0.396	0.465
Number of branches/plant	$1^{\text {st }}$		-0.578*	0.532^{*}	$0.721^{* *}$	-0.29	0.414	0.378	-0.370	-0.313
	$2^{\text {nd }}$		-0.471 ${ }^{\text {* }}$	0.455	0.212	0.067	-0.252	0.052	-0.175	-0.047
	Average		0.02	$0.597{ }^{* *}$	$0.614^{* *}$	-0.315	0.138	0.235	-0.455	-0.311
Height to first pod (cm)	$1^{\text {st }}$			-0.752**	-0.552*	0.164	0.189	-0.352	$0.495{ }^{*}$	0.542^{*}
	$2^{\text {nd }}$			-0.232	-0.272	-0.564*	0.123	0.074	-0.107	-0.103
	Average			0.190	0.244	0.242	-0.045	-0.456	0.358	0.440
Number of pods/plant	$1{ }^{\text {st }}$				$0.771^{* *}$	-0.246	-0.279	0.329	-0.419	-0.405
	$2^{\text {nd }}$				0.428	-0.023	-0.406	-0.067	-0.630**	-0.554*
	Average				0.725	-0.191	-0.368	0.225	-0.569*	-0.536*
Pods Weight /plant(g)	$1{ }^{\text {st }}$					-0.146	0.240	0.298	-0.301	-0.241
	$2^{\text {nd }}$					-0.101	-0.019	0.107	-0.338	-0.250
	Average					-0.163	0.120	0.226	-0.322	-0.236
Seed yield/plant (g)	$1{ }^{\text {st }}$						0.079	-0.441	$0.675^{* *}$	0.584^{*}
	$2^{\text {nd }}$						-0.125	-0.380	0.205	0.090
	Average						-0.009	-0.480*	$0.670^{* *}$	0.485^{*}
100-seed weight (g)	$1^{\text {st }}$							0.121	0.007	0.107
	$2^{\text {nd }}$							0.028	0.308	0.474^{*}
	Average							0.079	0.141	0.297
Seed yield (kg/plot).	$1^{\text {st }}$								-0.828**	-0.817**
	$2^{\text {nd }}$								-0.323	-0.398*
	Average								-0.737**	-0.73**
Number of broomrape $/ \mathbf{m}^{2}$	$1^{\text {st }}$									$0.974^{* *}$
	$2^{\text {nd }}$									$0.912^{* *}$
	Average									$0.939^{* *}$

Correlation coefficient

The correlation coefficient between each pair of studied traits was calculated and presented in Table 6. The results revealed that the remarkable observes were recorded for the obtained negative and highly significant between seed yield/plot and each of number of broomrape $/ \mathrm{m}^{2}\left(-0.828^{* *}\right.$ and $\left.-0.737^{* *}\right)$ and broomrape dry weight, $\mathrm{g} / \mathrm{m}^{2}\left(-0.817^{* *}\right.$ and $\left.-0.730^{* *}\right)$ in first sowing season and concerning to the average of both sowing seasons, respectively. Second sowing season possessed the same negative correlation but without significance. The most important yield components such as number of pods/plant and pods weight/plant exhibited the same direction of negative correlation with both of number and weight of broomrape $/ \mathrm{m}^{2}$ with either of significant or not correlation values on both seasons and their average. Moreover, one of the attributed yield traits i.e. number of branches/plant exerted the same negative correlation coefficient with number and weight of broomrape $/ \mathrm{m}^{2}$. These obtained results were logic due to the decreased broomrape around faba bean plants will increase their productivity and seed yield and for its components. (EL-Sherbeni et al., 2021).

Conclusion

Finally, we can conclude that intercropping faba bean with some trap crops (Fenugreek, Lupine, and Egyptian clover), spraying with glyphosate and pulling on growing to leant cultivar Misrl and some trap crops gave the highest reduction in Orobanche injury in faba bean. Also, cultivar Giza 843 gave the highest seed yield.

References

Abo-Shall, A.M.H. and Ragheb, E.I.M. (2014). Management of Orobanche crenata using trap crops and phytomza orobanchia kalt. In broad bean (Vicia faba) field in Egypt. Egyptian Journal of Biological pest control, 24 (1): 217-223.
Al-Menoufi,O.A., El-Safwani, N. A., Zaitoun, F. M. (1991). Studies on orobanche spp.II. A possible mechanism of resistance in Vicia faba L. to Orobanche crenata Forsk. J. Agric. Sci. Mansoura Univ., 16:371-378.

Bakheit, B.R., Allam, A.Y. and A.H. Galal. (2002). Intercropping faba bean with some legume crops for control of Orobanche crenata. Acta Agronomica Hung. 50 (1):16.

Briache, F.Z., Ennami, M., Mbasanimansi, J., Gaboun, F., Abdelwahd, R., Fatemi, Z. E. A., El-Rodeny, W., Amri, M., Triqui, Z.E.A. and Mentage, R. (2019). Gield and controlled conditions screenings of some faba bean (Vicia faba L.) genotypes for resistance to the parasitic plant Orobanche crenata Forsk. And investigation of involved resistance mechanisms. Journal of plant Diseases and protection. 126 (3): 211-224.

Eid, S.D.M., Mobarak, O.M.M. and Abou Zied, Kh.A. (2017). Evaluation of integrated broomrape (Orobanche crenata) management packages under effect of varieties, seeding rates and roundup treatment in faba bean under sandy soil condition. Alexandria Journal of Agricultural Sciences. 62 (1): 31-44.

EL-Metwally, I. M., El-Shahawy, T.A. and Ahmed, M.A. (2013). Effect of sowing dates and some broomrape control treatments on faba bean growth and yield. Journal of Applied Sciences Research, 9 (1): 197-204.

EL-Sherbeni A.E.A, Hamed, S.A.A, Khaffagy, A.E.B., ELkmash, R.A.A. (2021). Effect of cultivars, intercropping and glyphosate herbicide on broomrape (Orobanche crenata Forsk) and faba bean productivity. Archives of Agriculture Sciences Journal, 4 (3): 235-250.
FAO (2021). Food and Agriculture Organization, Available at:http:// Faostat.fao.org.
Gomez, K.A. and Gomez, A.A. (1984). Statistical Procedures for Agriculture Research. 2nd Edn. John wiley and Sons Inc., New York, USA., ISBN: 139780471879312, pp:13-175.
Ismail, A.E.A. (2013). Integration between nitrogen, manure fertilizers, cultural practices and glyphosate on broomrape (Orobanche crenata Forsk) control in faba beans (Vicia faba L.). Bulletin of Faculty of Agriculture, Cairo University, 64 (4): 369378.

Kakahy A.N.N., Ahmad, D. and Abdullahi, A.S. (2012). The effect of planting distance on yield of beans (Vicia faba L.) under drip irrigation system. African Journal of Agricultural Research, 7 (46): 6110-6114.

Köpke, U. and Nemecek, T. (2010). Ecological services of faba bean. Field Crops Research, 115 (3): 217-233.

Naser, S.M and Leilah, A.A. (1993). Integrated analysis of the relative contribution for some variables in sugar beet using some statistical techniques. Bulletin of the Fac.Agric., Univ. of Cairo, 44:253-266.
Oswald, A., Ransom, J.K., Kroschel, J. and Sauerborn, J. (2002). Intercropping controls Striga in maize based farming systems. Crop Production, 21:367-374.
Samadzadeh, E., Lack, S. and Fazel, M.A. (2013). Analysis of correlation and stepwise regression between grain yield and related traits of corn hybrids. International J. of Agric. And Crop Sci., 6 (2):100-102.
Shafshak, S.F., Abd-Halim, A.A.; Rosenherger, J.L., Saad, A.M.M. and Ahmed, F.A. (1995). Stepwise regression and response curve analysis for important yield factors in maize. Annals of Agric. Sc. Moshtohor,33 (2): 525-544.

Walker, T.T. (1960). The use of a selection index technique in the analysis of progeny row data. Emp. Cott. Rev., 37: 81-107.

تأثير تحميل بعض المحاصيل البقولية والرش بالجليفوسـات على مكافحة الهالوك وانتاجية الفول البلاي ومكونـاته أسماء على محمد على*، باهى راغب بخيت قسم المحاصبل، كلية الزر اعة، جامعة اسيوط، مصر. الملخص
أجريت هذه الار اسـة في مزر عة كلية الزر اعة جامعة اسيوط الموبوعة طبيعياً بنبات الهالوك خلال الموسـمين 2022/2021 ،2023/2022 وكان الهـف من الدراســة معرفة تأثثير تحميل بعض المحاصيل البقولية (الحلبة والترمس والبرسيم المصري) وكذللك الرش بالجليفوسـات والعزيق على
 والرش بالجليفوسـات و العزيق من شـأنها أن تسـاعد في تقليل الإصــابـة بنبات الهالوك وك في محصـول الفول البلدي. ونتيجة لذلك، لوحظ زيـادة معنويـة في عدد الأفر ع و عدد القرون ووزنها /نبات من

 إلى انخفاض العدد والوزن الجاف لســـنابل الهالوك/ م² بنســبة 13.9 ،32.0\% ،24.5 24 ،37 $\%$ فـي الموسم الأول والثانتي مقارنـة بـــــالصنف جيزة 716 على التو الي. أعطى التفاعل بين نظم التـي التحميل و الجليفوسـات ومعاملة العزيق والأصـناف أعلى انخفاض في العدد والوزن الجاف للهالوك ومن ثم
 الاقتصــادي. أظهر كل من تحليل الانحدار المتعدد والبسـيط أن محصـول بذور النبات الفردي كان أعلى الصفات مسـاهمة في محصول بذور القطعة التجريبية معطياً مسـاهمة قـر ها ها 0.231. سـجلت قيم ارتباط عالية المعنوية وسـالبة بين المحصول البذري وكل من عدد سنابل الهالوك (-0.828 ، -

[^0]: *, **, *** Stepwise, Simple and Partial regression analysis, respectively.

