COMBINING ABILITY FOR YIELD AND ITS ATTRIBUTES IN NEWLY DEVELOPED YELLOW MAIZE INBRED LINES

Eatemed M. H. Ahmed

Maize Research Section, Field Crops Research Institute, A.R.C

Abstract: Eight selected S₄ yellow inbred lines derived from the wide genetic base Population Gemmeiza Yellow maize at Mallawy Agricultural Research Station, were top-crossed with each of three commercial inbred line testers, namely, Gm-1001, Gm-1002 and Gm-1004 in 2005 season. The 24 top-crosses along with the check yellow maize SC-155 were evaluated at Sakha and Mallawy Agriculture Research Stations, ARC in 2006 growing season for grain yield (ard/fed), days to 50% silking, plant height and ear height.

The obtained results revealed that mean squares due to top-crosses, lines, testers and lines x testers were highly significant for grain yield at each location. The combined data for grain yield over the two locations showed highly significant variances for locations, crosses, lines and interactions of lines x testers and location, crosses x locations and lines x locations and well as line x tester x location interaction.

Two inbred lines (L-3 and L-5) had positive GCA effects and were good combiners for grain yield. The tester line Gm1002 was a good general combiner for both grain yield and days to 50% silking.

Variance due to SCA was greater in magnitude than that due to GCA for silking date and grain yield at Sakha and over locations and for silking date and ear height at Mallawy indicating that non-additive genetic variance was the major source of genetic variation. The magnitude of $\delta^2_{GCA} \times \text{Loc}$ interaction was larger than $\delta^2_{SCA} \times \text{Loc}$ for ear height and grain yield. Results showed also that crossing the tester Gm-1004 with either of the inbred lines L-7 and L-5 produced the best two single crosses which significantly surpassed the check single cross 155 (20.74 ard/fad.) by 3.56 and 3.05 ard/fad., respectively. However, from the combined data, the top crosses (L-8 x Gm-1002), (L-7 x Gm-1002), (L-6 x Gm-1002), (L-4 x G-1004), (L-4 x Gm-1001), (L-3 x Gm-1001) and (L-2 x Gm-1004) produced 22.93, 22.65, 22.58, 22.26, 22.23, 22.44, and 22.35 ard/fad., respectively, relative to the commercial check SC 155 (20.74 ard/fad.). These nine yielded top crosses have to be advanced to the other steps for evaluation and testing.

Key words: Maize, combining ability, gene action, top crosses.

Received on: 7/10/2008 Accepted for publication on: 30/10/2008

Referees: Prof. Dr. Mosad Al-Hifni Prof. Dr. Aatef Abo-Alwafa
Introduction

Successful development of maize hybrids depends upon accurate assessment of line's genotype during selection. Hallauer (1975) indicated that a suitable tester should include simplicity in use, provide information that correctly classifies the relative merit of lines, and maximize genetic gain. In general, selection experiments have indicated differences between testers in ranking the genotypes of a population (Lonnquist and Lindsey, 1964; Horner et al., 1969; and Mostafa et al., 1991).

Commonly, National Maize Breeding Program uses the top cross procedure to evaluate combining ability of inbred lines in a hybrid program and to determine the breeding values of maize genotypes.

Grain yield has received most of the emphasis in maize breeding. Dominance gene effects were reported to be more important in controlling grain yield than additive effects (Sprague and Suwantradon 1975; Mostafa et al., 1991; and Abd El Aziz et al., 1994). However, other results indicated the importance of additive gene effects for maize grain yield (Russell et al., 1973; Silva and Hallauer, 1975; Horner et al., 1976; Hallauer and Mirinda, 1981; and El-Itriby et al., 1990).

The magnitude of the interaction between SCA with location was found to be greater than that of GCA × Location for grain yield and plant height (Amer and El-Shenawy, 2007). Abd El-Maksoud et al. (2003) found that the additive genetic variance was smaller in magnitude than of non-additive genetic variance for days to 50% silking, plant height and yield and its components. Highly significant differences were reported to be present among entries and their parents, crosses and parent vs. crosses for all traits. The interactions between entries (genotypes) by location and parent × location and parent vs. crosses × location were highly significant for all studied traits (Shehata et al., 1997). Moreover, El-Zeir et al. (1993), El-Sherbieny et al. (1996), Tulu and Ramachandrappa (1998), Motawei (2005), Soliman and Osman (2006) and Abd El-Moula (2006), reported that the additive component of gene action had the major role in the inheritance of days to 50% silking, plant and ear height, number of ears/100 plants and grain yield (ard/fed.) as compared with the non-additive component. However, the SCA variance was reported to be greater in magnitude than that due to GCA variance for the grain yield and other traits. With the interaction of SCA with location being markedly greater than that of GCA for grain yield, days to 50% silking, plant and ear height and no. of ears/100 plant (Singh and Singh 1998, Barakat et al., 2003 Abd El-Moula et al., 2004 and Abd El-Moula 2005).
Gado (2000) found that the variance due to GCA (lines) was greater in magnitude than that due to SCA indicating that the additive genetic variance was the major source of variation responsible for the inheritance of the plant height, ear height, 100-grain weight and grain yield. Also, the interaction of GCA by locations was markedly higher and positive for grain yield and other traits.

The main objectives of current investigation were to (1) evaluate 24 top crosses (8 lines x 3 testers), (2) estimate GCA effects for lines as well for testers and SCA effects of crosses for grain yield and other traits and (3) estimate the variances δ^2_{GCA} for lines and testers and δ^2_{SCA} for top crosses and their interaction with location.

Materials and Methods

Eight S4 yellow maize inbred lines derived from Gemmeiza yellow population at Mallawy Agricultural Research Station were top-crossed with each of three tester lines namely, Gm-1001, Gm-1002, and Gm-1004. Which were developed by National Maize Research Program at Gemmeiza Agriculture Res. Station and are currently used in seed production of the commercial hybrids.

The 24 yellow top-crosses were established during 2005 summer season at Mallawy Agric. Res. Station. In 2006 season, 24 top-crosses and the commercial check hybrid SC-155 were evaluated at two locations; Sakha and Mallawy Agric. Res. Stations, using RCBD with four replications for each location. The experimental plot was one row, 6 meters long with 80 cm between rows. Planting was in hills spaced 25 cm apart. Data for days to 50% silking date, plant height and ear height and grain yield (ard/fed) were recorded. Analyses of variance were carried out separately for each location and were combined over locations according to Gomez and Gomez (1984). Combining ability analyses were carried out for each location according to Kempthorne (1957).

Results and Discussion

Analysis of variance

Mean squares for grain yield and other studied traits at Mallawy (Mal), Sakha (Sk) and when combined over locations are presented in Table (1).

Significant differences were detected between locations for all studied traits indicating that the two locations differed in their environmental conditions. These results are in agreement with those obtained by Abd El-Moula (2005), El-Sherbieny et al. (1996), El-Zeir et al. (2000), Abd El-Moula et al. (2004), Shehata et al. (1997) and Gado et al. (2000).

Mean squares due to crosses, lines, testers and lines x testers were significant for all studied traits at Sakha, Mallawy and over locations, except L x T for plant height at Sakha and plant height and ear
height at Mallawy. Similar results were obtained by El-Sherbieny et al. (1996), Shehata et al. (2001), Abd El-Moula (2005), Soliman and Osman (2006), Amer and El-Shenawy (2007).

In addition, the interaction of crosses x loc were significant for all the studied traits, except for ear height. Significant line x loc interaction was found for days to 50% silking date and grain yield. Tester x Loc. interaction was significant for all traits, except for silking date. Significant line x loc interaction was found for days to 50% silking date and grain yield. These results are in line with those obtained by Shehata et al. (1997), Gado (2000), Shehata et al. (2001), Motawei et al. (2005) and Amer and El-Shenawy (2007).

Table 1: Mean squares (MS) for grain yield and other traits at Sakha, Mallawy and over locations in 2006 season

<table>
<thead>
<tr>
<th>Sov.</th>
<th>Df</th>
<th>Ms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Silking date</td>
</tr>
<tr>
<td>Sakha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reps</td>
<td>3</td>
<td>1.264</td>
</tr>
<tr>
<td>Crosses</td>
<td>23</td>
<td>21.759**</td>
</tr>
<tr>
<td>Lines (L)</td>
<td>7</td>
<td>38.185**</td>
</tr>
<tr>
<td>Testers (T)</td>
<td>2</td>
<td>46.385**</td>
</tr>
<tr>
<td>L x T</td>
<td>14</td>
<td>10.028**</td>
</tr>
<tr>
<td>Error</td>
<td>69</td>
<td>1.619</td>
</tr>
<tr>
<td>Mallawy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reps</td>
<td>3</td>
<td>82.288</td>
</tr>
<tr>
<td>Crosses</td>
<td>23</td>
<td>11.793**</td>
</tr>
<tr>
<td>Lines (L)</td>
<td>7</td>
<td>18.392**</td>
</tr>
<tr>
<td>Testers (T)</td>
<td>2</td>
<td>18.010*</td>
</tr>
<tr>
<td>L x T</td>
<td>14</td>
<td>7.606*</td>
</tr>
<tr>
<td>Error</td>
<td>69</td>
<td>2.093</td>
</tr>
<tr>
<td>Combined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location (L)</td>
<td>1</td>
<td>249.797**</td>
</tr>
<tr>
<td>Rep/loc</td>
<td>6</td>
<td>41.776</td>
</tr>
<tr>
<td>Crosses (C)</td>
<td>23</td>
<td>28.081**</td>
</tr>
<tr>
<td>Lines (L)</td>
<td>7</td>
<td>46.743**</td>
</tr>
<tr>
<td>Testers (T)</td>
<td>2</td>
<td>60.693**</td>
</tr>
<tr>
<td>L x T</td>
<td>14</td>
<td>14.092**</td>
</tr>
<tr>
<td>C x loc.</td>
<td>23</td>
<td>5.471*</td>
</tr>
<tr>
<td>L x loc.</td>
<td>7</td>
<td>9.833**</td>
</tr>
<tr>
<td>T x loc.</td>
<td>2</td>
<td>3.703</td>
</tr>
<tr>
<td>L x T x loc.</td>
<td>14</td>
<td>3.542*</td>
</tr>
<tr>
<td>Error</td>
<td>138</td>
<td>1.856</td>
</tr>
</tbody>
</table>

* ** Significant at 0.05 and 0.01 levels of probability, respectively.
The variances due to testers were greater in magnitude than those of lines for all studied traits at Sakha and over locations, except for ear height and days to 50% silking date at Mallawy. In addition, the variances due to tester × locations were higher than lines × locations for plant height, ear height and grain yield (ard/fed). These results indicated that the testers contributed much more to the total variation and were more affected by the environmental conditions than the lines. Similar results were obtained by Gado et al. (2000), El-Morshidy et al. (2003), Abd El-Moula (2005) and Abd El-Moula and Ahmed (2006).

Mean Performance

Mean performance of the top-crosses for all studied traits are shown in Table 2.

The average performance of the crosses showed that the earliest and latest crosses were L-5 x Gm-1002 (57.25 days) and L-8 x Gm-1004 (66.0 days) at Sakha location, respectively. The cross L-6 x Gm-1004 was the earliest (55.75 days) while the cross L-2 x Gm-1002 was the latest (61.75 days) at Mallawy. The cross L-1 x Gm-1002 was the earliest (57.25 days) while the cross L-8 x Gm-1004 was the latest (61.75 days) over both locations. Out of 24 crosses, there were 10, 12 and 9 crosses significantly earlier than the check SC-155 at Sakha, Mallawy and over locations, respectively.

Plant height ranged from 185.25 (cross L-6 x Gm-1001) to 239.25 cm (cross L-7 x Gm-1004) at Sakha; from 207.75 (cross L-2 x Gm-1002) to 233.25 cm (cross L-4 x Gm-1004) at Mallawy, and from 200.875 (L-1 x Gm-1001) to 232.5 cm (L-7 x Gm-1004) over the two locations. Meanwhile, out of 24 crosses, there were 19 crosses at Sakha and 4 crosses over locations significantly shorter than the check SC-155.

The highest value for ear height was recorded for the cross L-8 x Gm-1004 (131.75 cm), while the lowest ear position (107.75 cm) was recorded for crosses L-1 x Gm-1002 and L-2 x Gm-1001 at Sakha. The shortest cross was L-1 x Gm-1004 measuring 105.75 cm, while the tallest ear placement was L-4 x Gm-1004 which gave 130.75 cm at Mallawy. Moreover, shortest cross (110.0 cm) was L-2 x Gm-1002 while the tallest ear placement (126.75 cm) was recorded for L-4 x Gm-1004 over locations. There were 18 crosses at Sakha and 11 crosses had significantly lower ear placement than the check SC-155 over locations. Similar results were obtained by Abd El-Moula et al. (2004).

Grain yield ranged from 11.71 (cross L-8 x Gm-1001) to 23.3 ard/fad. (crosses L-5 x Gm-1004) at Sakha, while it ranged from 19.04 for the cross L-2 x Gm-1002 to 30.69 ard/fad for the cross (L-7 x Gm-1004) at Mallawy and from 17.51 for the (cross L-4 x Gm-
1002) to 24.8 ard/fad for the (cross L-7 x Gm-1004) over locations. The best yielding crosses were L-2 x Gm-1004, L-3 x Gm-1001, L-4 x Gm-1001, L-4 x Gm-1004, L-6 x Gm-1001, L-6 x Gm-1002, L-6 x Gm-1004, L-7 x Gm-1002, L-7 x Gm-1004 and L-8 x Gm-1002 at Mallawy and (L-5 x Gm-1004 and L-7 x Gm-1004 over locations which surpassed the check SC-155 by 26.82, 21.54, 30.10, 34.96, 24.33, 29.45, 21.74, 31.03, 45.65 and 20.32% at Mallawy and by 14.67 and 19.53% over locations, respectively. Over the two locations, the two crosses (L-5 x Gm-1004) and (L-7 x Gm-1004) significantly exceeded the check SC-155. Similar results were obtained by Abd El-Moula et al. (2004) and Abd El-Moula and Ahmed (2006).

Estimation of general (GCA) and specific combining ability (SCA) effects:

General combing ability (GCA) effects of the eight inbred lines and the three testers for the studied traits at Sakha, Mallawy and over locations are presented in Table (3).

Negative and significant GCA effects were obtained for inbred lines L-2, L-3 and L-5 at Sakha, Mallawy and over locations for silking date. Regarding to plant height, the inbreds L-1 and L-4 had negative and significant GCA effects. Negative desirable GCA effects were detected for lines L-2 and L-6 at Sakha, Mallawy and over locations for ear height. Generally, lines L-3 and L-5 manifested positive and significant GCA effects at Sakha Mallawy and over locations for grain yield/fed.

Results in Table (3), revealed that the tester line Gm1002 was a good general combiner for days to 50% silking and grain yield. Meanwhile, tester Gm1001 was good general combiner for plant and ear height at Sakha, Mallawy and over locations.

Estimates of SCA effects for the studied traits are presented in Table (4). For days to 50% silking, three crosses, namely L-1 x Gm-1002, L-4 x Gm-1001 and L-7 x Gm-1004 at Sakha, Mallawy and across locations and the cross L-8 x Gm-1002 at Sakha and L-8 x Gm-1001 at Mallawy had negative and significant SCA. Negative SCA effects were also detected for plant height for crosses L-6 x Gm-1001 at Sakha and L-6 x Gm-1004 at Mallawy. Only one cross (L-5 x Gm-1002) showed negative and significant SCA effects for plant height at Mallawy. Positive and significant SCA effects were detected for the crosses L-1 x Gm-1004 and L-8 x Gm-1002 at each station and over locations, L-3 x Gm-1001 and (L-5 x Gm-1004 at Sakha and L-4 x Gm-1001 over locations for grain yield.

Variance components

Estimates of combining ability variances δ^2 GCA for tested lines and testers as well as δ^2 SCA for each location and their interaction
with locations are presented in Table (5) and (6).

Results revealed that values of δ^2GCA for testers was higher than δ^2 GCA for lines for plant height and grain yield at Sakha and Mallawy and plant height over locations. The magnitude of the variance due to specific combining ability (SCA) was larger than that obtained for general combed ability (GCA) for silking date and grain yield at Sakha and over locations, and silking date and ear height at Mallawy. This indicates that the non-additive genetic variance was predominant and played the major role in the inheritance of these traits. The

variances due to δ^2 GCA x Loc for testers were larger in magnitude than δ^2 GCA x Loc for lines, indicating that the tested inbred lines were much more affected by the environmental conditions than testers. The magnitude of δ^2GCA x Loc was larger than δ^2 SCA x Loc for ear height and grain yield. These results indicated that the additive gene effects interacted more with the environment than non-additive. Meanwhile, the magnitude of δ^2SCA x Loc was larger than δ^2 GCA x Loc for silking date and plant height. These results indicated that the non-additive gene effects interacted more with the environment than additive.

Table(5): Estimates of general (GCA) and specific combining ability (SCA) variances at Sakha and Mallawy for grain yield and other traits.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Sakha</th>
<th>Mallawy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ^2 GCA lines</td>
<td>δ^2 GCA testers</td>
</tr>
<tr>
<td>Silking date</td>
<td>2.346</td>
<td>1.136</td>
</tr>
<tr>
<td>Grain yield</td>
<td>-0.144</td>
<td>1.626</td>
</tr>
</tbody>
</table>
Table(6): Combined estimates of general (GCA) and specific combining ability (SCA) variance for grain yield and other traits.

<table>
<thead>
<tr>
<th>Trait</th>
<th>δ^2 GCA</th>
<th>δ^2 GCA x Loc.</th>
<th>δ^2 GCA x Loc.</th>
<th>δ^2 SCA x Loc.</th>
<th>δ^2 SCA x Loc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ear height</td>
<td>15.364</td>
<td>2.690</td>
<td>0.997</td>
<td>5.818</td>
<td>6.147</td>
</tr>
<tr>
<td>Grain yield</td>
<td>0.765</td>
<td>-2.015</td>
<td>0.514</td>
<td>4.617</td>
<td>-1.257</td>
</tr>
</tbody>
</table>

These results are in agreement with those obtained by, Singh and Singh (1998), Barakat et al. (2003), Abd El-Moula et al. (2004), Abd El-Moula (2005), Motawi et al. (2005), Abd El-Moula and Ahmed (2006) and Amer and El-Shenawy (2007) who reported that the non-additive genetic variance interacted more with the environment than the additive component. On the other hand Sadek et al. (2000), Soliman et al. (2001), and El-Morshidy et al. (2003), reported that SCA or non additive genetic effects played an important role in the inheritance of grain yield, silking date, plant length and ear height.

Different findings were reported by Jha and Khehra (1992), Abed El-Aziz et al. (1994), Mostafa et al. (1996), San Vicente et al. (1998), Konak et al. (1999) and Abd El-Hamid (2004) who found that non additive gene action was predominant for such trait.

It could be concluded that, the promising inbred lines L-3 and L-5 were possessed best GCA effects for grain yield, should be immediately utilized in hybridization program to improve maize productivity. Moreover, The crosses L1 x Gm-1004, L2 x Gm-1004, L3 x Gm-1001, L3 x Gm-1002, L4 x Gm-1001, L4 x Gm-1004, L5 x Gm-1002, L5 x Gm-1004, L6 x Gm-1002, L7 x Gm-1002, L7 x Gm-1004 and L8 x Gm-1002 which yielded more than the best check Sc-155 in grain yield should be further tested for the possibility of registration as commercial release.

References

Abd El-Maksoud, M.M.I; G.A.R. El-Sherbinyen and M.H. Abd El-

قدرة التالف للمحصول ومكوناته في سلالات جديدة من الذرة الشامية الصفراء

اعتماد محمد حسنين أحمد

قسم بحوث الذرة الشامية - معهد المحاصيل الحقلية - مركز البحوث الزراعية

هجنت 8 سلالات من الذرة الشامية مع 3 كشافات مختلفة رئيسيًا وهي جميدة 1001 وجميزة 1002 وجميزة 1004 وذلك في محطة بحوث ملوى في موسم 2005. تم قياس 24 هجين قمي مع صنف المقارنة هجين نوردي 155 في كل من محطة البحوث الزراعية بسخا والملوي في موسم 2006 لصفات عدد الأيام حتى ظهور 50% من الحراب وارتفاع النبات والكوز ومحمول الحبوب بالأردب للفدان. وقد أظهرت النتائج اختلافات معنوية بين المواقع للصفات المدروسة كذلك وجدت اختلافات معنوية بين الهجن القمية ومجنزاتها، السلالات والكشافات لكل الصفات المدروسة بسخا والتحليل المشترك في ما عدا صفة ارتفاع الكوز والتفاعل بين السلالات والكشافات في محطة بحوث سخا، كما وجدت اختلافات معنوية بين الهجن والسلالات والكشافات والتفاعل بينهما لصفتي عدد الأيام حتى ظهور 50% من الحراب ومحمول الحبوب بمحطة بحوث ملوى. وأيضاً، وجدت اختلافات معنوية بين المواقع والتفاعل بين المناطق والهجن القمية والمناخ والسلامات لكل من صفة الورم ومحصول الحبوب.

كما كان التفاعل بين الكشافات والمحصول كان معنويًا لصفة ارتفاع النبات ومحصول الحبوب والكوز.

وكانت السلالة جميدة 1002 أفضل كشاف لتأثير القدرة العامة على الأنتاج لصفة محصول الحبوب عند الأيام حتى ظهور 50% من الحراب ولكن السلالة جميدة 1001 أفضل كشاف لتأثير القدرة العامة على الأنتاج لصفة ارتفاع النبات والكوز.

كان النسب الوراثي غير المضيف هو الأكثر تحكماً في توريث صفات عدد الأيام حتى ظهور 50% من الحراب ومحمول الحبوب بسخا والتحليل المشترك، وصفة عدد الأيام حتى ظهور 50% من الحراب وارتفاع الكوز بملوي.

كان سلوك التنبؤ الوراثي المضيف أكثر تأثيرًا بالمقابل على صفات ارتفاع الكوز ومحمول الحبوب، بينما كان التنبؤ الوراثي غير المضيف أكثر تأثيرًا بالمقابل على صفات عدد الأيام حتى ظهور 50% من الحراب وارتفاع الكوز.