Identification key for Some Phoretic Acarididies (Acari: Acaridida) from Upper Egypt with Description of Two New Species

El Said A. El-Eraky; F.A. Abdel-Galil and M.K. Bohibah
Dept. Plant Protection, Fac. Agric., Assiut Univ., Assiut, Egypt

Key word: Acari, Acaridida, Phoretic, Termites, Identification, Egypt.

Abstract
The study herein presents brief characterization and identification key for some Acarididies (Acari: Acaridida), phoretic on termites collected from termite nests of different locations in Upper Egypt. The present work is a continuity of the collecting activity of the first author during 1998 to 2008. Samples were collected from certain nests of termites, Psammotermes hypostoma Desneux (New Valley, Assiut and Qena Governorates) and Amitermes desertorum (Desneux) (Aswan Governorate). The identification key is simple and easy to understand and the diagnosis is in most cases based on genera and species. The two new acarid mite species, extracted from nests of the sand termite, Psammotermes hypostoma Desneux are described and illustrated in this study.

Introduction
The Acaridida mites are among the most successful arthropods to exploit spatial and temporally restricted habitats. Dispersal between habitat patches is affected by phoretic association between the specialized deutonymphs of the Acaridida mites and the host which may be either another arthropod or a vertebrate (OC’onnor, 1982 and Houch and OC’onnor, 1991). Knowledge of the Acaridida mites is still in a relatively early stage of development. Most of non-parasitic species have been described from either the adults or the dispersing deutonymphs, but not both. With the exception of some groups of mammalian ectoparasites, relatively few species have been described from any group of the Acaridida mites in most area of the world, especially in Egypt. Many species pertaining to this group were recorded in Upper Egypt by Eraky (1993, 1994a&b, 1997, 1998, 1999a,b & c, 2000a&b), Eraky and Shoker (1993a,b and 1994) and Earky and Osman (2008a,b&c). The systematic studies of the Acaridida fauna of North America were recorded by OC’onnor (1989, 1990 and 1991) and OC’onnor and Houck (1989).

On the other side, the super cohort Acarididies contains the species of economic importance, utilizes a wide range of food including grain, fishmeal and substances containing sugars (e.g., dried fruits) but the large number of acaridid species associated with these materials and a relatively few can be considered as an important pests (Hughes, 1976). This group includes the
Economically important families, of which some cause mange and scabies in domestic animals, a number of families include parasites and commensals of mammals and birds, and those associated with stored products. In addition to infesting food, certain species also live in human habitats where they are found in damp situations favoring the growth of fungi upon which they feed. Members of one family, commonly referred to as house dust mites, are of considerable medical importance in being the causative agents of a topic asthma and rhinitis, the allergy being present in their fecal pallets. The majority of species are living as saprophytic and fungivores in soil litter, debris and organic manure. Others can be found on different economic plants, causing injury to plant directly by feeding, or by transmitting various disease agents (Zakhvatkin, 1941; Baker and Wharton, 1952; Scheucher, 1959; Hughes & Jackson, 1958 and Hughes, 1961 & 1976). The hypopus (heteromorphic deutonymph) in this group is a succeeding stage both in dispersal and behavior, highly resistant to environmental stress. Some are adapted for dispersal by phoresy, in most cases phoretic on insects by having attachment organs in the form of sucker-plate (Griffits, 1977; Houck & O'connor, 1991; O'Connor, 1994; Kettle, 1995; Myles, 2002 and Eraky, 1998, 1999a, b & c and 2008a, b & c).

Description of the new species

Forcellinia assiuti sp.n. (Hy-popus)

Measurements: Length: 111-117 µm & Width: 95-98 µm

Dorsum (Fig. 1). Body approximately ovoid in outline, anteriorly and posteriorly rounded. Propodosoma comparatively triangular in its outline. Both pairs of dorsal setae of propodosoma relatively long and thin, inner one standing anteriorly to the outer pair, yet in the same length. Dorsosejugal region present, without any sculpture. Dorsal surface smooth. Notogaster setae short and thin, but well visible, especially the marginal ones.

Ventrum (Fig. 2). Infracapitulum of gnathosoma (Fig. 3) oblong, palpi hardly separated off, solenidia long and thick, infra-
capitular setae well developed. Decurrence of apodemes and the shape of epimeres agree with basic type of genus. Apodemes well-developed, all epimeres closed. Epimeres I and III with suction disks each. A paired suction discs standing at genital opening in addition to a pair of simple setae standing above them.

Adhering plate (Fig. 4). Adhering plate large, entirely filling space between legs IV, but removed from the body end. Disks D and DS of the adhering plate well-developed, D1 and D2 approximately large, the inner rings of D2 removed from each other, most disks ornamented with foveolae.

Figs. (1-8): Forcellinia assiuti sp. n.
1- Dorsum, 2- Ventrum, 3- Gnathosoma, 4- Adhering plate, 5- Leg I, 6- Leg II, 7- Leg III, 8- Leg IV.
Legs (Figs. 5-8). All legs with well-developed claws. Adhering setae of all legs simple. Solenidia \(\varphi_1 \) of tarsi of legs I and II very long, longer than entire tarsi of both legs, much longer on legs I. Solenidia \(\omega_1 \) of tarsi of legs I and II, approximately longer and thicker than \(\omega_3 \).

Material examined: Holotype and 6 paratypes extracted from the nests of the sand termite, *Psammotermes hypostoma* Desneux: El Ghorieb, Assiut Governorate, Egypt, Leg. M.K. Bohbah. 20/6/2007. Holotype and 4 paratypes deposited in Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut, Egypt; 2 paratypes deposited in the Arachooidea collection of the Hungarian Natural History Museum, Budapest.

Remarks: The new species is well relegable to the genus *Forcellinia* Oudemans, 1924 and stands very near to *Forcellinia egyptiaca* Eraky, 1998, collected from the nests of the sand termite, *Psammotermes hypostoma* Desneux El-Kharga Oasis, New Valley, Egypt and may be distinguished from it by the following characters:

<table>
<thead>
<tr>
<th>Egyptiaca Eraky, 1998</th>
<th>Assiuti sp.n.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Dorsosejugal region wide, ornamented with punctulae</td>
<td>• Dorsosejugal region narrow, without any sculpture.</td>
</tr>
<tr>
<td>• Infracapitulum of gnathosoma rounded, palpi not separated off</td>
<td>• Infracapitulum of gnathosoma oblong, palpi hardly separated off.</td>
</tr>
<tr>
<td>• Infracapitular setae thin, scarcely visible</td>
<td>• Infracapitular setae well-developed.</td>
</tr>
<tr>
<td>• Epimeres I and IV with suction disks, epimeres III without any sculpture</td>
<td>• Epimeres I and III with suction disks each, a paired suction disks standing on epimeres IV.</td>
</tr>
<tr>
<td>• Tarsi of legs I and II approximately short.</td>
<td>• Tarsi of legs I and II long, longer at Leg I.</td>
</tr>
</tbody>
</table>

Caloglyphus problematica sp.n. (Hypopus)

Measurements: Length: 120-130 \(\mu m \), & Width: 85-94 \(\mu m \).

Dorsum (Fig:9). Propodosoma nearly triangular in its outline, inner pair of propodosomatic setae (Sci) at the same length of the outer one (Sce), originated in front of them. Surface of propodosoma smooth, without any sculpture. Dorsosejugal region ornamented with transversal lines. Notogastral surface smooth, setae short and thin. Ventrum (Fig. 10). Infracapitulum of gnathosoma (Fig. 11) long, palpi short, hardly distinct. Solenidia long, infracapitular setae well observable.

Apodemes of anterior sternal plate weekly developed, all terminating free, thus epimeres open. Apodemes III free medially, sejugal ones missing. In pos-
terior sternal plate, intermediate sternal apodeme short, ending free and posterior sternal apodeme missing. Epimeres I, III and IV with well-developed succ-torial disks each, larger on epi-mere IV.

Adhering plate (Fig. 12) very large, occupied entire body surface behind and partly between legs IV.

Legs (Figs. 13-16). All legs with normal developed claws. Adhe-ring setae of legs I approximately long and robust, legs II-IV with simple setae each. Solenidia ω_1 and ω_3 of tarsi of legs I and II shorter than solenidia φ_1 of both legs.

Holotype and 2 paratypes deposited in Plant Protection Depart-ment, Faculty of Agriculture, Assiut University, Egypt and 2 paratypes deposited in the Arachnidea collection of the Hungarian Natural History Mu-seum, Budapest.

(9-16): *Caloglyphus problematica* sp.n.

9- Dorsum, 10-Ventrum, 11-Gnathosoma, 12- Adhering plate, 13- Leg I, 14- Leg II, 15- Leg III, 16- Leg IV
Remarks: This species appears to be related to certain genera. The final place of the species can be made only after further revisional work, its relegation to the genus Caloglyphus Berlese, 1923 is still problematic. The new species differs from its congeners by the course, the shape of apodermes and the shape of adhering plate distinguishes it also from other related taxa.

Key of 18 Acaridides species collected from the nests of termites in Upper Egypt

The present study includes an identification key for 18 Acaridides mite species (Table 1) belonging to 2 families and 10 genera, based on the morphological characters of the hypopial stages. All species are collected from termite nests from three locations of Upper Egypt (Assiut, Qena, Aswan and New Valley).

(Drawings of all species are presented in Eraky, 1998, 1999a,b&c, and 2000b and Eraky and Osman, 2008c).

1 (12) All legs long and tapering, the two hind pairs of legs being directed forward.................Family: Histiostomatidae

2 (8) Epimeres I and III with well-developed normal suckers or cups, sensory setate of leg I normal developed, shorter than entire tarsus.

3 (9) All legs with well-developed claws, dorsosejugal region with sculpture consists of transversal lines, ribs or striations.

4 (10) Suctorial plate normal-developed (e.g. two pairs of movable, two pairs of immovable suckers and other five structures: ring or cups), epimeres I and III with normal suckers or discs.

5 (6) Apodemes III fused medially, sejugal one missing. Solenidia ω1 and φ1 of tarsi of legs I and II normal-developed...............Histiosotoma mannai Eraky, 1999a

6 (5) Apodemes III free medially, sejugal apodemes represented, only fragmentally, solenidia ω1 and φ1 of tarsi I and II large and clavateHistiosotma camphori Eraky, 1999c

7 (11) Apodemes III not touching each other medially and have a small lateral arch, both pairs of scapular setae short and thin, originating far from each other, behind the lateral margin of the propodosoma ...Histiosotoma sammari Eraky, 1999c

8 (2) Epimeres I without normal suckers or cups, epimeres III with normal suction cups, sensory setae of legs I much longer than entire tarsi

9 (3) All legs with normal-developed claws, except legs IV clawless, dorsosejugal region ornamented with transversal lines.
10 (4) Suctorial plate with two pairs of conoids, epimeres I and III with alveoli.

11 (7) Apodermes III fused medially without lateral arch, both pairs of scapular setae originating along a common line up and parallel the dorsosejugal suture.

12 (1) All legs short and stout, the two hind pairs of legs being directed backward Family: Acaridae

13 (51) All legs with well-developed claws, dorsal surface smooth, without any sculpture.

14 (24) Dorsosejugal region approximately wide, suctorial plate small removed from the posterior body margin by a distance exceeding its length.

15 (25) Propodosoma narrow, approximately sinuous anteriorly, its surface smooth.

16 (22) Tarsi of legs III and IV long and thin, normally forming a right angle with the rest of the legs, infracapitulum of gnathosoma normal-developed, longer than wide, its surface smooth.

17 (20) Tarsi of legs I to IV with 2 spoon-shaped setae each, infracapitulum of gnathosoma short, hardly longer than wide.

18 (27) Dorsal setae very long and thick, except the marginal ones, inner pair of prodorsal setae much longer than the outer one. Acotyledon ahmadi Eraky and Osman, 2008c

19 (21) Epimeres I and III with alveoli, epimeres IV with normal discs, anterior and posterior sternal plates standing not far from each other Acotyledon lamiai Eraky, 1998

20 (17) Tarsi of legs I to IV with 3 large calyciform setae each; infracapitulum of gnathosoma long, much longer than wide.

21 (19) No any structures on epimere I, setae on epimere III and normal disks on epimere IV; anterior and posterior plates standing far from each other by a long distance.

22 (16) Tarsi of legs III and IV short and stout; infracapitulum of gnathosoma piriform, surface ornamented with punctulae.

23 (26) Hysterosomatic setae long and thick, each with two lateral branches, the marginal setae very short and spimple; inner pair of scapular setae shorter than the outer one, the latter much longer Cosmoglyphus barbisetus Eraky, 1999c

24 (14) Dorsosejugal region approximately narrow, suctorial plate large, situated not far from the posterior body margin.

25 (15) Propodosoma wide, nearly triangular in its outline, its surface with sculpture.

26 (23) Hysterosomatic setae approximately short and thin without lateral branches, scapular setae also thin

.............................. Cosmoglyphus manure Negm, 2007
27 (18) Dorsal setae short and simple, inner scapular setae shorter than the outer one.

28 (29) Body very long, nearly equally rounded anteriorly and posteriorly, propodosoma ornamented with foveolae in its anterior part, its posterior part membranous …… *Caloglyphus ornatus* **Eraky 2000b**

29 (28) Body approximately oblong, surface of propodosoma smooth

30 (31) Adhering plate very large, occupied entire body surface behind and partly between legs IV. All apodemes short ending free, thus epimeres of anterior and posterior plates open ………………………. *Caloglyphus problematica* **sp. n.**

31 (30) Adhering plate normal-developed, standing approximately far from the body end, apodemes long, fused medially, thus all epimeres closed.

32 (57) All apodemes long, thus all epimeres closed, entire surface of epimeres ornamented with punctucae.

33 (34) Dorsosejugal region ornamented with heavy punctucae, infracpitulum of gnathosoma small and rounded………………. *Forcellinia egyptiaca* **Eraky, 1998**

34 (33) Dorsosejugal region smooth, without any sculpture, infracapitulum of gnathosoma normal-developed, longer than wide ………………… *Forcellinia assiuti sp.n.*

35 (46) Dorsal setae very short and scarce, epimeres I, III and IV with normal-developed suction disks.

36 (41) Dorsosejugal region wide, ornamented with transversal lines, scapular setae short, inner pair much shorter.

37 (39) Propodosomal margin convexity rounded, laterally with a denticulate body margin; infracapitulum of gnathosoma wide approximately trapezoid ……………… *Mahunkallinia serratus* **Eraky, 1999b**

38 (42) Epimere I with a minute, epimere III with a very small suction disks, epimere IV with a pair of setae standing near primordial of genital opening, tarsi I and II with large straight claws, those in legs III and IV falcate-shaped.

39 (37) Propodosmal margin rounded, gnathosoma developed as a convexity labular projection, bears only two pairs of setae, inner one very small.

40 (43) All apodemes short ending free in a granulate halo in the middle of the entire body surface, legs I and II with large lanceolate setae each, absent on the two hind legs.

41 (36) Dorsosejugal region narrow, ornamented with scarce punctucae, outer pair of scapular setae long and thick, much longer than the inner one ………………… *Mahunkaglyphus solimani* **Eraky, 1998**
Epimeres I, III and IV without any sculpture, legs I and II with normal claws each, legs III and IV with very thin ones.

Apodemes of anterior sternal plate short, ending free, no granular halo present, all apodemes on posterior sternal plate missing, no lanceolate setae on legs I and II.

Dorsosejugal region present only as a band, prodorsal setae comparatively long, both pairs at the same length.

Gnathosoma approximately rounded, bears only a pair of thin and short setae, sectorial plate large, standing close to the posterior body margin.

Dorsal setae approximately long, no any structures on epimeres I, III and IV — *Acarus solimani* Eraky, 1999c

Leg I with very long setiform and feebly bent claw, leg II with bottle-shaped one, legs III and IV with long and thick claws each, all apodemes long, except posterior sternal apodeme missing, thus epimeres I, II and III close, epimere IV open.

Epimeres I, III and IV with normal suction disks each, propodosoma narrow encircling hysterosoma like a narrow strip.

Dorsosejugal region normal, but narrow without any sculpture, propodosomal setae reduced.

Gnathosoma modified, long with thickened base, sectorial plate normal-developed, originating not far from the body end — *Froriepia negmi* Eraky, 1999b

All legs with normal claws, except legs IV clawless, dorsal surface with heavy sculpture.

Legs I to III with very short claws each, legs IV clawless, apodemes of anterior sternal plate short, ending free, on posterior sternal plate all apodemes long.

Epimeres I and III with or without alveoli, epimeres IV with small suction disks, propodosoma enlarged anteriorly, nearly triangular, longer than the half length of hysterosoma.

Dorsal side ornamented with longitudinal, arcuate and irregular lines. Dorsosejugal region smooth, without any sculpture.

Epimeres I and III without any sculpture, epimeres IV with normal suction disks and a pair of setate, ap. IV standing far from ap. sp., the later not reaching primordial of genital opening — *Calvolia zaheri* Eraky, 1998

Dorsal surface ornamented with punctucae and longitudinal and arcuate lines; propodosma with punctucae and transverse lines medially, dorsosejugal region ornamented with heavy transversal lines.

All apodomes short, thus all epimeres open, entire surface
of epimeres smooth.

58 (55) Epimeres I with alveoli, epimeres III without any sculpture, epimeres IV with a pair of long setae adjacent to primordial of genital opening …… *Calvolia solimani* Eraky, 1999b

Table (1): Distribution of some Acaridides (Acari: Acaridida) phoretic on termites in Upper Egypt.

<table>
<thead>
<tr>
<th>No.</th>
<th>Mite species</th>
<th>Study area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Family: Acaridae Ewing and Nesbitt, 1942</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Acarus solimani Eraky, 1999c</td>
<td>Aswan</td>
</tr>
<tr>
<td>2</td>
<td>Acotyledon ahmadi Eraky and Osman, 2008c</td>
<td>Qena</td>
</tr>
<tr>
<td>3</td>
<td>Acotyledon lamiai Eraky, 1998</td>
<td>New Valley</td>
</tr>
<tr>
<td>4</td>
<td>Acotyledon longsetoses Eraky, 1999b</td>
<td>Aswan</td>
</tr>
<tr>
<td>5</td>
<td>Caloglyphus ornatus Eraky, 2000b</td>
<td>Aswan</td>
</tr>
<tr>
<td>6</td>
<td>Caloglyphus problematica sp.n.</td>
<td>Assiut</td>
</tr>
<tr>
<td>7</td>
<td>Calvolia solimani Eraky, 1999b</td>
<td>Aswan</td>
</tr>
<tr>
<td>8</td>
<td>Calvolia zaheri Eraky, 1998</td>
<td>New Valley</td>
</tr>
<tr>
<td>9</td>
<td>Cosmoglyphus barbisetus Eraky, 1999c</td>
<td>Aswan</td>
</tr>
<tr>
<td>10</td>
<td>Cosmoglyphus manuri Negm, 2007</td>
<td>Assiut</td>
</tr>
<tr>
<td>11</td>
<td>Forcellinia assiuti sp.n.</td>
<td>Assiut</td>
</tr>
<tr>
<td>12</td>
<td>Forcellinia egyptiaca Eraky, 1998</td>
<td>New Valley</td>
</tr>
<tr>
<td>13</td>
<td>Froriepia negmi Eraky, 1999b</td>
<td>Aswan</td>
</tr>
<tr>
<td>14</td>
<td>Mahunkaglyphus solimani Eraky, 1998</td>
<td>New Valley</td>
</tr>
<tr>
<td>15</td>
<td>Mahunkallinia serratus Eraky, 1999b</td>
<td>Aswan</td>
</tr>
<tr>
<td></td>
<td>Family: Histiostomatidae (Anoetidae Oudemans, 1904)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Histiostoma camphori Eraky, 1999c</td>
<td>Aswan</td>
</tr>
<tr>
<td>17</td>
<td>Histiostoma manni Eraky, 1999a</td>
<td>Aswan</td>
</tr>
<tr>
<td>18</td>
<td>Histiostoma sammari Eraky, 1999c</td>
<td>Aswan</td>
</tr>
</tbody>
</table>

All types established herein are deposited in the Acari collection of the Plant Protection Department, Faculty of Agriculture, Assiut University, Egypt and the Arachnoidea collection of the Hungarian Natural History Museum, Budapest, Hungary.

References

Eraky, S.A. 1994a. Three new anoetid mites extracted from

Griffiths, D.A. 1977. A new family of astigmatid mites from lies Crozet, Sub-Antractia: Introducing a new concept relating to ontogenetic development of the idiosomal

Mahunka, S. 1973b. Xenanoetus grandiceps sp. n., sowie weitere Angaben über die Anoetiden-fauna der Mongolei
El-Eraky et al. 2010

Samsinak, K. 1957. Acotyledon tetramori n. sp. eine neue
مفتاح تقسيمي لبعض أنواع حلم الأكاريديدا المستخرجة من عشوش النمل الأبيض مع وصف نوعان جديدان

السيد على العراقي، فاروق عبد القوى عبد الجليل، محمد قاسم بحيبح
قسم وقاية النبات – كلية الزراعة – جامعة أسيوط – أسيوط – مصر

لقد تم إجراء العديد من الدراسات على أنواع الحلول التابعة لفصائل الأكارديدا والهستوماتيدين والمستخرجة من مناطق بيئية مختلفة في صعيد مصر. ولقد أهتمت هذه الدراسات بالناحية التقسيمية حيث وصف وتصنيف العديد من أنواع النمل العديدة والتي لم يتم اكتشافها من قبل ضمن الأنواع المعروفة. واهتمت الدراسة الحالية بعمل مفتاح تقسيمي للأنواع المصاحبة للنمل الأبيض فقط والمستخرجة من عشوش النمل الأبيض بمحافظات (أسيوط – قنا – أسوان – الوادي الجديد) حيث تم تسجيلها من قبل بواسطة كل من:

Eraky (1998, 1999a,b,c, 2000), Eraky and Osman (2008)

هذا بالإضافة للأنواع الجديدة.

ولقد اشتملت الدراسة الحالية على الموضوعات التالية:

2- وصف ومناقشة العديد من الصفات المورفولوجية الهامة للحوريات الثنائية من هذه المجموعة وأجزاء المقارنات المختلفة مع الأنواع قريبة الشبه. اكتشاف نوعان جديدان تابعان لفصيلة الأكاريديدا وهما:

Caloglyphus problematica sp.n.
Forcellinia assiuti sp.n.

وقد أجريت هذه الدراسات من الوجهة التقسيمية ووقشت الصفات المورفولوجية للأنواع قريبة الشبه لإظهار أهم الاختلافات والتي على أساسها تم فصل الأجناس والأنواع التابعة لكل جنس وكذلك بالنسبة للأنواع الجديدة. وتفيد هذه الدراسات التقسيمية لمعرفة الأنواع الأكاروسية المتواجدة والمصاحبة للنمل الأبيض حيث أن دراسة تلك الأنواع في مصر لم ينل اهتمام الدارسين بالمقارنة بالمجموعات الأكاروسية الأخرى.