Heterosis and Combining Ability in Grain Sorghum
\textit{(sorghum bicolor} (L.) Moench\text{)} Under Normal and
Water Stress Conditions.

A. E. El-Dardeer1, M. A. El- Morshidy2, A. M. Mahmoud2,
H. I. Ali1

1Sorghum Res. Dept., Field Crop Res. Institute, A. R. C. Egypt.
2Agronomy Dept., Fac. Agric., Assiut Univ., Assiut, Egypt.

Abstract:

Seven CMS and seven restorer lines of grain sorghum \textit{((Sorghum bicolor} (L.) Moench)}], their forty nine single cross hybrids and the check hybrid Shandaweel-1 were evaluated in two field experiments in 2007 season. The first experiment was irrigated normally as recommended, while in the second experiment, one irrigation was skipped after every normal irrigation (water stress). Combined analysis over the two irrigation treatments showed highly significant differences between the two irrigation treatments and among genotypes. Mean square due to the interaction of genotypes x irrigation treatments was also highly significant, indicating that genotypes responded differently to irrigation treatments. Furthermore, mean squares due crosses (C), parents (P), P vs. C, females (F), males (M), F x M and their interaction with irrigation treatments were significant for all studied traits except days to 50\% flowering. Line x tester analysis indicated that the lines ICSA-364 and ICSR-66 showed the highest significant GCA effects for grain yield/ plant. The GCA effect for days to 50\% flowering of lines ICSA-363, ICSA-572 and ICSR-102 and were negative and significant over the two irrigation treatments and they considered good combiners for earliness. Better parent heterosis was generally manifested for plant height panicle length and width and grain yield/plant. The cross (ICS.A-610 x ICS.R-31) had highest positive significant heterosis for grain yield (66.97\%). Crosses (ICS.A-364x ICSR-66), (ICS.A-364x ICSR-102) and (ICS.A-490x ICSR-66) had higher grain yield than the check (Shandaweel-1) and it should be produced commercially after tested on a large scale.

Introduction:

Sorghum \textit{(Sorghum bicolor} (L.) Moench\text{)} is one of the oldest cultivated cereals and it is one of the major cereal crops in the world that ranks the fifth after wheat, rice, maize and barley. The cultivated area in the world was 44 million hectares producing around 63 million Tons of grains (FAO 2009). In Egypt, grain sorghum is the fourth...
Cereal, ranking after wheat, maize and rice, the cultivated area is about 158 thousand hectares producing 880 thousand tons of grains (FAO 2009). Most of these areas are concentrated in Upper Egypt at Assiut and Sohag Governorates.

The discovery of cytoplasmic male sterile lines in sorghum facilitates the production of hybrids. The development of hybrid sorghum in Egypt began in 1990 and is dependent on exotic CMS and restorer lines that show good adaptation for the prevailing local conditions. Water deficiency is a serious limitation to crop production in large areas of the world. Sorghum (Sorghum bicolor (L.) Moench) is one of the most important crops in arid and semi-arid regions where precipitation is low and highly variable. For sorghum production in these areas, the cultivars are expected to be tolerant limited irrigation. The demand for cereals in Egypt calls for an increase in the production of sorghum that comes mainly from increased yield per unit area. Developing high yielding and adapted sorghum hybrid is one approach to resolve cereal grain deficits. The improvement of sorghum production was mainly achieved through breeding of high yielding cultivars coupled with improved agronomic practices. The general combining ability (GCA) of each parent should be examined when the objective is the development of superior genotypes. The estimation of GCA under different treatments of irrigation will be helpful to decision regarding the commitment of breeding resources to develop and evaluated efficient methods of producing commercial F1 hybrids under different treatments of irrigation. Parent that will contribute favorable combination of genes for yield and other agronomic traits are the most sougth.

Hovny et al (2000) found that significant better parent heterosis was observed for flowering date, plant height and 1000-grain weight. Twelve crosses out of eighty had positive significant specific combining ability effects for grain yield.

Abd El-Halim, (2003) found wide variations in heterosis among crosses for earliness, plant height, 1000-grain weight and grain yield/plant. Mahmoud (2002) found that most of the studied crosses were significantly earlier in flowering compared to the earlier parent at two locations and under three levels of irrigation. Mean days to 50 % flowering of the hybrids and their parents were increased while plant height and 1000-grain weight were decreased with increasing water stress. However, the F1 hybrids had taller plants and higher grain yield/plant than the best parent under the two irrigation treatments. EL-Abd (2003) found a reduction of 23.25, 6.07, 12.14 and 5.61 % for grain/plant, plant height, leaf area/plant and 1000-grain weight, respectively, under water stress. However, the percentage of heterosis was re-
duced by 8 % for grain /plant, 2
% for plant height and 1.5 % for leaf area /plant under water
the lines ICSA-88003, ICSR-237
and ICSR-92003 showed the
highest significant GCA effects
for grain yield. Mahmoud and
Ahmed (2010) found that under
clay soil and surface irrigation,
the female line B11 and male line R-
272 were the best general com-
biner for grain yield/plant while
under sandy soil and drip irriga-
tion, the female line B93 and
male line R-273 were the best
general combiner for grain
found some parents having sig-
nificant negative gca for days to
heading and significant positive
for plant height, 1000-grain
weight and grain yield were con-
sidered as good combiners. They
added that significant positive
heterosis in grain yield heterosis
was found for more than half of
the hybrids studied. Several cross
combinations showed significant
positive 1000-grain weight het-
erosis, significant negative days
to heading heterosis and good
performance.

The present study used 7
CMS and 7 restorer lines to
evaluate agronomic performance,
assess the general combining
ability of the parents and hetero-
sis and specific combining ability
of their crosses.

Materials and Methods
Seven cytoplasmic male ster-
ile lines (CMS-lines) i.e., ICS.A-
363, ICS.A-364, ICS.A-490,
ICSA-572, ICSA-605, ICSA-610
and ICSA-63 and seven restorer
lines i.e., ICSR-31, ICSR-59,
ICSR-66, ICSR-89037, Dorado
and ICSR-89035 exotic from
ICRISAT

Forty –nine CMS x restorer
single crosses were produced in
2005 and 2006 seasons, the forty-
nine hybrids, their parents and
the check (Shandaweel -1) were
evaluated in two experiments at
Shandaweel Agric. Res. Sohag,
Egypt. The first experiment was
irrigated normally (6 irrigations)
while in the second experiment,
one irrigation was skipped after
every normal irrigation (3 irriga-
tions). The randomized complete
block design with three replica-
tions was used in the two ex-
periments. Plot size was one row
5meters long and 70cm apart
planting was done in hills spaced
20 and thinned two plants/hill
after hoeing and after three
weeks from planting. Cultural
practices were followed as re-
commended for growing grain
sorghum. Data were recorded on
days to 50 % flowering, plant
height (cm), panicle length and
width, 1000 grain weight and
grain yield /plant adjusted to 14%
moisture content. A combine sta-
tistical analysis over the two ex-
periments was done according to
Means of genotypes were com-
pared by Revised LSD. General
(G.C.A.) and specific combining
ability (S.C.A.) effects were es-
timated according to Kempthorne
(1957) and as illustrated by Singh
Significance of GCA and SCA was tested by
\[t(gca) = \frac{\text{gca effect}}{\text{SE.gca}} \]
\[t(sca) = \frac{\text{sca effect}}{\text{SE.sca}} \]

Heterosis was calculated as the percentage deviation of F1 mean from the mean of its better parent and its significance was tested by the appropriate LSD test.

Results and Discussion

A-Mean performance of parents and crosses

The combined analysis of variance including the check over the two irrigation treatments (Table 1) indicated highly significant differences between environments (E), among genotypes (G) as well as GxE for all studied traits. Separate analysis of variance for each environment revealed significant differences among genotypes, crosses, females (F), males (M), FxM interaction (Tables 2 and 3).

The data presented in Table (4) showed highly significant differences between environments and genotypes, among males, females and males x females for all studied traits. However, the mean square values for males were higher than those of males x females for all studied traits. These higher values indicated the large effect of the testers on cross performances in all studied traits. The interaction between males with irrigation were highly significant for all studied traits except plant height. The interaction between males x females with irrigation were significant for all studied traits except days to 50% flowering. Also, the interaction between females and irrigations was significant for all studied traits.

Results in Table (6) showed that, 15, 22, 13, 5, 8 and 12 out of 49 crosses were significantly superior to the check hybrid in flowering date, plant height, panicle length, panicle width, 1000-grain weight and grain yield/plant, respectively. The female parents ICSA-630 and ICSA-572 gave the earliest crosses compared with other female parent. Also, the male parents ICSR-102 and ICSR-59 gave the earliest crosses, and the female parent ICSA-363 gave the tallest plant height. Also, the male parent ICSR-31 had the tallest plant when crossed with the female parents. The female parent ICSA-364 had longer panicle length than other female parent. The female parent ICSA-363 had the heaviest 1000-grain weight when crossed with any of the male parent. The female ICSA-364 had the highest grain yield/plant when crossed with any of the male parents, also, the male parent ICSR-66 had the highest grain yield/plant when crossed with any of the female parents. Hussein (2001), Mahmoud (2002) Abd-EL-Halim (2003), Abo-Elwafa et al (2005) and Mahmoud and Ahmed 2010, reported that most CMS x restorer crosses were taller, earlier, had longer panicles and outyielded their parents.
Assiut J. of Agric. Sci., 42 (Special Issue)(The 5th Conference of Young Scientists Fac. of Agric. Assiut Univ. May, 8, 2011) (17-38)
El-Dardeer et al. 2011.
Assiut J. of Agric. Sci., 42 (Special Issue)(The 5th Conference of Young Scientists Fac. of Agric. Assiut Univ. May, 8, 2011) (17-38)
El-Dardeer et al. 2011.
El-Dardeer et al. 2011.
B-Heterosis:

1- Days to 50 % flowering: The heterotic values over irrigation treatments ranged from 5.19 for (ICSA-364 x ICSR-89035) to 18.82 % for (ICSA-630 x ICSR-31). Seven crosses had negative and significant heterosis values. The crosses (ICSA-364 x ICSR-89035), (ICSA-572 X ICSR-31) and (ICSA-572 X ICSR-102) showed the highest negative value of heterosis over the best parent under both irrigation treatments. The results showed that these crosses were earlier than the earliest parent Table (7).

2- Plant height: Based on the combined over the two irrigations treatments, it ranged from 36.19 (ICSA-605 x ICSR-66) to 74.98 % (ICSA-572 x ICSR-59). Most of the F1 crosses had positive heterosis for plant height, which indicates that these crosses were taller than the tallest parent. Twenty–seven of these crosses had positive and highly significant heterosis values under the two irrigations treatments. While 17 cross had negative and highly significant heterosis values under the two irrigations treatments. The crosses (ICSA-490 x ICSR-59), (ICSA-490 x ICSR-89037), (ICSA-572 x ICSR-59) and (ICSA-630 x ICSR-59) gave positive and high heterotic values for plant height compared with the best parent. Generally positive and significant values of heterosis, indicated that these crosses were taller than the tallest parent Table (7).

3 - Panicle length: Based on combined of the two irrigation treatments, the panicle length ranged from -23.79 (ICSA-605 x ICSR-59) to 24.01% for (ICSA-364 x ICSR-66). Thirteen crosses had highly significantly positive heterosis values. Twelve cross showed highly significant heterosis values under the irrigation treatments which indicates that these crosses had longer panicle length than their best parent and that may contribute to yield and yield potential. The crosses (ICSA-364 x ICSR-66) and (ICSA-364 x ICSR-102) gave positive and high heterotic values for panicle length compared with the best parent, Table (7)

4- Panicle width: Heterotic values for the combined data over irrigations treatments (Table 7) ranged from -20.2 for (ICSA-630 x Dorado) to 40.73% for (ICSA-605 x ICSR-31). Ten crosses had positive and highly significantly heterosis values. The crosses,(ICSA-364 x ICSR-31),(ICSA-364 x ICSR-59),(ICSA-364 x Dorado),(ICSA-490 x ICSR-89035),(ICSA-572 x ICSR-31),(ICSA-572 x ICSR-89035),(ICSA-605 x ICSR-31), (ICSA-605 x ICSR-59) and (ICSA-605 x ICSR-102) showed high values of the heterosis over the best parents under both irrigation treatments, which may contribute to yield potential of these crosses. Generally, positive and significant indicating that these crosses wider panicle than the best parents.
5- 1000-grain weight: The combined data over two irrigation treatments indicated that heterotic values ranged from -27.77 (ICSA-630 x ICSR-89037) to 18.58% (ICSA-605 x ICSR-102). Five crosses had positive and highly significant heterosis values. Most of crosses had negative heterosis values under both irrigation treatments, indicating that these crosses had lower 1000-grain weight than the best parent. The crosses (ICSA-364 x ICSR-102), (ICSA-605 x ICSR-66), (ICSA-605 x ICSR-102), (ICSA-605 x ICSR-89037) and (ICSA-630 x ICSR-31) gave positive and high heterotic values for 1000-grain weight compared with the best parent, table (7).

6- Grain yield / plant (g): Heterotic values for grain yield/plant over the two irrigation treatments (Table 7) varied from -64.62 (ICSA-630 x ICSR-89035) to 66.97% (ICSA-610 x ICSR-31). Twenty crosses had significantly positive heterosis values. The crosses (ICSA-363 x ICSR-89037) (ICSA-363 x Dorado), (ICSA-572 x Dorado), (ICSA-605 x ICSR-102), (ICSA-605 x Dorado), (ICSA-610 x ICSR-31) and (ICSA-610x ICSR-89037) showed high and highly significant heterosis values. The crosses,(ICSA-363 x Dorado),(ICSA-364 x ICSR-66),(ICSA-364 x ICSR-102), (ICSA-572 x Dorado),(ICSA-605 x ICSR-31),(ICSA-605 x ICSR-66),(ICSA-605 x ICSR-102),(ICSA-605 x Dorado), (ICSA-610 x ICSR- 31), (ICSA-610 x Dorado) and (ICSA-630 x Dorado) gave the highest heterosis values over the best parent under the two irrigation treatments. El-Menshawy (1996) reported that heterosis values for grain yield over better parent up to 26.0% and heterosis over better parent for 1000-grain weight and plant height up to 24.2%, 69.6%, respectively. Radwan et al (1997) showed that heterosis for grain yield was 26% above the value of the better parent. Abd-El-Halim (2003) found heterosis values for 1000-grain weight and grain yield/plant up to 22.49% and 106.8%, respectively. Abo-Elwafa et al (2005) found that heterosis values of the best parent ranged from -12.37% for earliness to 106.82% for grain yield/plant.
El-Dardeer et al. 2011.
Assiut J. of Agric. Sci., 42 (Special Issue) (The 5th Conference of Young Scientists Fac. of Agric. Assiut Univ. May, 8, 2011) (17-38)
C-Combining ability:
C-I-General combining ability:
General combining ability (GCA) effects of the parental lines over the two irrigation treatments are presented in table (8). GCA, for days to 50% flowering, the female lines ICSA-363, ICSA-364 and ICSA-572 had negative and highly significant GCA effects, also for male lines ICSR-31 and ICSR-102 had negative and highly significant GCA effects indicating that these genotypes had favorable gene action for earliness. For plant height, the female line ICSA-363 and male line ICSR-31 had positive and highly significant GCA effects, indicating that these genotypes had favorable gene action for tallness. For panicle length, ICSA-364, the male line ICSR-31 and ICSR-66 had positive and highly significant GCA effects, indicating that these genotypes had desirable gene action for increasing length of panicle. For panicle width, ICSA-605 had positive and highly signification. For 1000-grain weight two female lines ICSA-363 and ICSA-490 and male line ICSR-102 had positive and highly significant GCA effects. For grain yield/plant three female line ICSA-364 and male line ICSR-66 had positive and highly significant GCA effects. The female line ICSA-364 had favorable gene action for earliness and high yield. The male line ICSR-102 had favorable gene action for earliness and high 1000-grain weight. Different general combining ability effects among male and females lines are frequently reported by Mahmoud (1997), Hoveny et al (2000), Abd-El-Halim (2003) and Mahmoud and Ahmed (2010).
Assiut J. of Agric. Sci., 42 (Special Issue) (The 5th Conference of Young Scientists Fac. of Agric. Assiut Univ. May, 8, 2011) (17-38)
C-II-Specific combining ability effects:

Estimates of SCA effects (Table 9) revealed that six crosses had negative and significant SCA effects for days to 50% flowering. For plant height eleven crosses had positive and highly significant SCA effects. For panicle length three crosses had positive and significant SCA effects. For panicle width three crosses had positive and significant SCA effects. For 1000-grain weight eight crosses had positive and significant SCA effects. Six crosses showed positive and significant SCA effects for grain yield/plant, whereas seven crosses had negative effects for grain yield/plant.

El-Dardeer et al. 2011.
References:
قوة الهجين والقدرة على الأنتلاف في الذرة الرفيعة للحبوب تحت الرى المعتدل والمجهود المائي

أعد الحمدي عبد الدردير، محمد عبد المنعم المرشد، عادل محمد محمود، حامد إبراهيم علي

قسم بحوث الذرة الرفيعة - مركز البحوث الزراعية - القاهرة.

قسم المحاصيل - كلية الزراعة - جامعة أسيوط.

استخدمت هذه الدراسة سلسلة سبعة سلالات عالية ذكرى سيتوبلزاميا وسبعة سلالات معيشية (الخصوبة من الذرة الرفيعة للحبوب وكذلك هجينة الذرة الرفيعة) للكشف عن هجينة وآباتها وجدت أن تأثير النباتات المختلفة على الانتفاخ كانت أعلى بنسبة 50% لذرة الرى المعتدل والمجهود المائي. وتم تقييم هذه الانتفاخ على الانتفاخ لسلسلة 102 ICSA-364 x ICSR-66، ICSA-490 x ICSR-66 وICS-364 x ICSR-66.

وهكذا كشفت الدراسة أن أنواع التراث الرفيع بناءً على الانتفاخ كانت أعلى بنسبة 50% لذرة الرى المعتدل والمجهود المائي. وتمت تقييم هذه الانتفاخ على الانتفاخ لسلسلة 102 ICSA-364 x ICSR-66، ICSA-490 x ICSR-66 وICS-364 x ICSR-66.

وهكذا كشفت الدراسة أن أنواع التراث الرفيع بناءً على الانتفاخ كانت أعلى بنسبة 50% لذرة الرى المعتدل والمجهود المائي. وتمت تقييم هذه الانتفاخ على الانتفاخ لسلسلة 102 ICSA-364 x ICSR-66، ICSA-490 x ICSR-66 وICS-364 x ICSR-66.

وهكذا كشفت الدراسة أن أنواع التراث الرفيع بناءً على الانتفاخ كانت أعلى بنسبة 50% لذرة الرى المعتدل والمجهود المائي. وتمت تقييم هذه الانتفاخ على الانتفاخ لسلسلة 102 ICSA-364 x ICSR-66، ICSA-490 x ICSR-66 وICS-364 x ICSR-66.

وهكذا كشفت الدراسة أن أنواع التراث الرفيع بناءً على الانتفاخ كانت أعلى بنسبة 50% لذرة الرى المعتدل والمجهود المائي. وتمت تقييم هذه الانتفاخ على الانتفاخ لسلسلة 102 ICSA-364 x ICSR-66، ICSA-490 x ICSR-66 وICS-364 x ICSR-66.

وهكذا كشفت الدراسة أن أنواع التراث الرفيع بناءً على الانتفاخ كانت أعلى بنسبة 50% لذرة الرى المعتدل والمجهود المائي. وتمت تقييم هذه الانتفاخ على الانتفاخ لسلسلة 102 ICSA-364 x ICSR-66، ICSA-490 x ICSR-66 وICS-364 x ICSR-66.

وهكذا كشفت الدراسة أن أنواع التراث الرفيع بناءً على الانتفاخ كانت أعلى بنسبة 50% لذرة الرى المعتدل والمجهود المائي. وتمت تقييم هذه الانتفاخ على الانتفاخ لسلسلة 102 ICSA-364 x ICSR-66، ICSA-490 x ICSR-66 وICS-364 x ICSR-66.

وهكذا كشفت الدراسة أن أنواع التراث الرفيع بناءً على الانتفاخ كانت أعلى بنسبة 50% لذرة الرى المعتدل والمجهود المائي. وتمت تقييم هذه الانتفاخ على الانتفاخ لسلسلة 102 ICSA-364 x ICSR-66، ICSA-490 x ICSR-66 وICS-364 x ICSR-66.