Impact of Plant Spacing and Weed Control Treatments on Yield, Quality of Soybean (*Glycine Max* L.) and Associated Weeds Characters under Middle Egypt Conditions

*Morsy, A.S.M.¹and M. M. Tantawy²

¹Department of Agronomy, Faculty of Agriculture and Natural Resources, Aswan, University, Aswan 81528, Egypt.
 ²Plant Protection Department, Faculty of Agriculture, Minia University, Minia, Egypt.
 ^{*}Corresponding author: drahmed1122@yahoo.com
 Received on: 22/3/2018

Abstract

The present study was carried out on soybean var. Giza 111 atthe Experimental Farm of Faculty of Agriculture, El-Minia University during the summer seasons of 2015 and 2016, to study the impact of plant spacing and weed control treatments on weed control, yield and quality of soybean. The treatments include rows and plant spacing (density) as P_1 : 60×4cm (175000 plant fed⁻¹), P_2 : 60×5cm (140000 plant fed⁻¹), P₃: 70×4cm (150000 plant fed⁻¹) and P₄: 70 × 5cm (120000 plant fed⁻¹) and 10 weed control treatments (W_1 : Gesagard 50% FW at 1 L fed⁻¹ ,W₂: Fusilade super 12.5%EC at 1 L fed⁻¹, W₃: Gesagard 50%FW+ Fusilade super 12.5% EC,W₄:Stomp 50%EC at 1.7 L fed⁻¹,W₅: Stomp 50%EC + Selectsuper 12.5% EC at 1 L fed⁻¹, W₆: Select-super 12.5%EC, W₇: Stomp 12.5%EC+ one hand hoeing, W_8 : hand hoeing twice, W_9 : unweeded check and W_{10} : weed free for whole seasons. This study was carried out in a strip-plot design with three replications. Results showed that increasing of soybean plant density by sowing in the narrow ridge (60 cm) and plant space (4 cm between hills) caused a significant reduction in fresh and dry weight of weeds at 60 days after planting (DAP), compared to wider plant spacing in both seasons. The narrow spacing 60×4 cm led to a reduction in dry weight of total weeds by 26.62 % and 22.90 % and increased soybean seed yield by 5.31% and 4.92% in 2015 and 2016 seasons, respectively. All weed control practices reduced the fresh and dry weight of total weeds, compared to the unweeded check in both seasons. Yield of seeds in unweeded check plots was decreased were about 43.18 and 42.69% due to about 3.5 and 3.3 ton fed⁻¹ fresh weight of total weeds in 2015 and 2016 seasons, respectively, compared to weed free for whole season. Protein and oil% of soybean seeds were decreased by (10.56 and 10.60%) and (18.23 and 18.05%) in 1^{st} and 2nd seasons, respectively due to the weed interference. The interaction effect between plant spacing, 60×4 cm (P₁) and weed free followed plant spacing P₁ and weed control by Stomp 50%EC + one hand hoeing (W_7) gave the best weed control efficiency (WCE) 78.9 and 81.0% in 2015 and 2016 seasons, respectively as well as superior in seed yield of soybean and net return.

Keywords: Soybean, plant spacing, herbicides, weed control treatments, Seed quality, WCE, WI.

Introduction

Soybean (*Glycine max* L.) is one of the most important summer leguminous crops, extensively successful in many provinces in Egypt and worldwide. Soybean is known as

"Golden bean" and miracle or wonder crop of 21th century. Chemical analysis showed that soybean seed contains almost 20% oil, 40% protein, 30% carbohydrates, 10% total sugar and 5% ash (Gulluoglu et al., 2017). It is very rich in mineral, vitamins, riboflavin, thiamins, iron, particularly calcium, phosphorus, salts and essential fatty acids (Acikgz et al., 2009). Therefore, Soybean is considered an excellent source of food for human and animal consumption. Soybean and fascinating versatile hasa innumerable possibilities not only in agriculture (i.e, fixes atmospheric N from 20 to 25 kg fed⁻¹ through root nodules and adds approximately 0.7 ton fed⁻¹organic matter through leaf fall (Kanase et al., 2006) but also in the industry. The world harvest of soybean is more than 50% of the total world oil seed production. Soyflour is extensively used in the industry of insecticides, disinfectants, and also in enrichment of media used for testing antibiotics. Soybean reduces the risk of cancers breast and prostate possibly due to the presence of isoflavone (Cassileth and Vickers, 2003).

In Egypt, the area of soybean in 2015 was 33896 fed, produced 46671 ton, with an average productivity of 1.377 ton fed⁻¹ (Agriculture Statistics, 2015).

Application of proper agronomic methods is one of the important factors for increasing the yield of soybean per unit area. This includes management of soybean plant spacing and densities, which is one of the important agronomic practices influencing crop growth and productivity (Caliskan *et al.*, 2007; El-Far *et al.*, 2016; Asmaa *et al.*, 2017; Gulluoglu et al., 2017 and Matsuo et al., 2018). Plant density plays an important role in the competitive balance between weeds and soybean. Suitable plant spacing causes development of branches and increases the node number and pod plant⁻¹ (Saitoh, 2011; El-Far et al., 2016 and Gulluoglu et al., 2017). Narrow row spacing is known to suppress weed growth, increased root activity and vertical distribution of light by closing crop canopy earlier than wider row spacing (Knezevic et al., 2003 and Bhagirath et al. 2014). Plant density did not effect on seed yield or protein and oil contents, however, at low densities there was an increase in the No. of pods plant⁻¹ (Andres *et al.*, 2018).

Weeds pose a serious problem for crop production. Weed species include a wide range of plant types ranging from the most simple to the most complex plant forms and they vary in rooting depth, heightand spreading habits. They interfere with crop plants by competing for available light, water, space, nutrient requirements and air. Generally, an increase in 1 kg of weed growth corresponds to 1 kg reduction of crop growth as weeds remove plant nutrients more efficiently than crop plants (Jadhav, 2007). Weeds may increase the cost of production, inhibit crop growth and reduce the quality and marketability of products. Weed infestation decreases soybean yield from 50- 60% (Jadhav, 2007) and removes 21.4 kg N and 3.4 kg P ha⁻¹ (Pandya et al., 2005). Ariunaa et al. (2016) found that Soybean can be infested by many weed species including grassy weeds and broad leaved weeds. Lamptey et al. (2015) reported that the mean predominant weed floras at the experimental field were broad leaved weeds (58.62%), sedges (26.93%) and grasses (14.44%). Weed control agriculture practices include inter alia crop manipulation, rotation crop species and hand hoeing. However, the control of weeds using herbicides is considered to be a favorable method as it cuts the costs, time and labor. Many authors (Balyan and Malik 2003; Sylvestre et al. 2013; Singh et al. 2016 and Akter et al. 2016) demonstrated that the judicious use of pre-emergence and post-emergence herbicides for controlling grasses and broad leaved weeds increases crop yield, improves crop quality and reduces production cost.

The objective of study is to evaluate the impact of plant density and the integrated weed management using certain herbicides on Soybean yield and its associated weeds under the environmental conditions of Minia Governorate, Egypt.

Materials and Methods Experimental Farm:

The field experiments were conducted at the experimental farm, Faculty of Agriculture, University of Minia, Egypt, during two successive summer seasons of 2015 and 2016. The soil was salty clay loam (organic matter 2.35%, total N o.14%, available P 18 ppm and pH 7.8). The preceding winter crop was wheat in both seasons. This investigation was carried out in split-block design with three replications. The vertical plots were occupied with weed control treatments, while, the strips plots were assigned for plant spacing treatments. The plot area was 21 m² (4.2 m width \times 5.0 m length). Plot width allowed for 7 and 6 ridges of soybean when planted in 60 and 70 cm widths, respectively.

Agricultural practices

Soybean was planted in constant spaced hills (4 and 5 cm apart) on one side of the ridge, at nearly 175.000 and 140.000 plants fed⁻¹ for ridge 60 cm width and 150.000 and 120.000 plants fed⁻¹ for ridge 70 cm width, respectively. Soybean used in the experiment was Giza 111, plots were sown by hand in the 14th April in both seasons [soybean seeds were inoculated with bacteria (*Bradyrhizobium japonicum*) strain just before planting]. All recommended agronomic practices were adopted throughout the two seasons.

Weed control treatment (W): Ten weed control treatments were applied in the experiments as indicated in Table 1.

No.	Treatments and dose of application
W_1	Gesagard (FW 50%) at rate 1.0 L fed ⁻¹
W_2	Fusilade super (EC12.5%) 1.0 L fed ⁻¹
W_3	Gesagard (FW 50%) + Fusilade super (EC12.5%)
W_4	Stomp (EC50%) 1.7 L fed ⁻¹
W_5	Stomp (EC 50%) + Select-super (EC 12.5%)
W ₆	Select-super (12.5% EC) at rate 1.0 L fed ⁻¹ + hand hoeing at 60 DAP
\mathbf{W}_7	Stomp (EC 50%) + hand hoeing at 30 DAP
W ₈	Hand hoeing twice at 18 and 30 DAP
W ₉	Weed free obtained by continuous hand weeding
W ₁₀	Control Unweeded : Allowing weeds to grow with soybean plants

Table 1.Weed control practices applied in the experiments.

Herbicides used

Table (2) includes the trade name, common and chemical name, chemical structure and time of application of herbicides used in the experiments. Herbicides were sprayed by CP3 knapsack sprayer with a water volume of 200 L fed⁻¹.

 Table 2. Trade name, common name, chemical structure and time of application of herbicides.

Trade name	Common name and chemical name	Chemical structure	Time of application
Gesagard (50% FW) 1.0 L fed ⁻¹	Prometryn: 2,4- bis(isopropylamino)-6- (methylthio)-s-triazine	$ \begin{array}{c} SCH_{3} \\ \downarrow \\ H_{3}C \\ H_{3}C \\ H \\ H$	Pre- emergence Soil surface application directly (after planting and before irriga- tion)
Fusilade super (12.5% EC) 1 L fed ⁻¹	fluazifop-P-butyl: R-2-[4-[[5-(trifluoromethyl)-2- pyridinyl]oxy]phenoxy]propanate	Fluarifop-P acid $F_5C - \bigcirc O - O -$	Post- emergence Applied at 30 days after planting (DAP)
Stomp (50% EC) 1.7 L fed ⁻¹	pendimethalin: [N-(1- ethylpropyl)-3,4 dimethyl-2,6- dinitrobenzen amine]	$o_{sN} \leftarrow \bigcup_{c,H_{s}}^{C_{cH_{s}}}$ pendimethalin $N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzene amine$	Pre- emergence soil surface application directly (after planting and before irriga- tion)
Select- super (12.5% EC) 1 L fed ⁻¹	clethodim:(E)-2[1-[[(3-chloro-2- propenyl)oxy]imino]propyl]-5- [2-(ethylthio) propyl]-3-hydroxy- 2-cyclohexen-1-one	$\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array}$	Post- emergence applied at 30 DAP

Data collection and measurements:

The following data were recorded during the growing seasons.

1- Weed characteristics:

Weeds survey was conducted randomly using one square meter from each plot after 60 days from planting. Weeds species accounted as plant m⁻² and hand pulled then identified and classified into three categories (narrow, broad leaved and total weeds) to estimate the following data.

- Weed density (No. of weeds m⁻²).
- Dry weight of total weeds (g m⁻²): all weed species m⁻² were air dried for 3 days then oven dried at 70°C for 24 hours then weighted to estimate dry weight of total weeds.

 Weed control efficiency (%): weed control efficiency (WCE) was calculated according to Sawant and Jadav(1985) as follows:

$$WCE(\%) = \frac{Dry \text{ weight of weeds in } m^2 \text{ unweed control } - Dry \text{ weight of weeds in } m^2 \text{ treated}}{Dry \text{ weight of weeds in } m^2 \text{ unweed control}} \times 100$$

- Weed index (WI): was calculated by using the following formula according to Gill and Vijaykumar, 1969.

$$WI(\%) = \frac{X - Y}{X} \times 100$$

Where:

X=Seed yield from maximum yield treatment.

Y=Seed yield from treatment for which weed index is to be calculated.

2- Soybean yield and its components:

Five plants from each plot were selected randomly and harvested separately. The following assessments on yield components were recorded: Plant height (cm), weight of seeds plant⁻¹ (g), 100-seeds weight (g), number of pods plant⁻¹, number of seeds pod⁻¹ and seed yield plant⁻¹ (g plant⁻¹). Seed and straw yield from each plot were estimated by harvesting, tying in bundles and sun dried. The bundles were weighted for biological yield. The weight of seeds obtained from each plot after threshing was converted into kg fed⁻¹.Straw yield for each plot was calculated by subtracting the seed vield from the biological yield of the respective plot.

3- Seed chemical composition:

- Oil and protein content of soybean seeds from all experimental plots were determined according to (AOAC, 1990).
- Oil and protein yield of seeds (kg fed⁻¹): were calculated by the following formulas:

Seed protein yield (kg fed⁻¹) = $\frac{(\text{Seed yield x seed protein \%})}{100}$

4- Economic evaluation of soybean production:

The economics of all treatments were calculated by considering the prevailing prices of inputs and produce (Table 3). The various formulas used were according to Heady and Dillon (1961) as follow:

- 1. Total Cost of cultivation (L.E) = The cost of cultivation was calculated by considering the prevailing market price of inputs, wages and the actual cost involved in various aspects during the investigation.
- Gross income (L.E) = price of soybean × seed yield (ton fed⁻¹)
- Net income (L.E) = Gross income
 Total cost.
- 4. Benefit Cost ratio (B/C) = Gross income / Total cost.

Actual values								
Price of herbicides L fed ¹								
2281 L.E fed ⁻¹								
232 L.E								
265 L.E								
230 L.E								
360 L.E								
$5 \times 50 = 250 \text{ L.E time}^{-1}$								
4336 L.E ton ⁻¹								
43 L.E haml ⁻¹								

Table 3. Parameters used to calculate the cost-benefit for the various inputs.

5- Statistical analysis:

According to strip plot design, the data were statistically analyzed using MSTAT-C computer package program. Mean differences between treatments were evaluated by Least Significant Difference (LSD) test at 5% as suggested by Gomez and Gomez (1984).

Results and Discussion 1- Weed Survey:

Table (4) demonstrates the english and scientific names and families of dominant weed species presented in field experiments in both growing seasons at Minia region.

1 an	Table 4. Weed species found in the experimental plots of soybean.								
No	English name	Scientific name	Family	Types					
1	Jungle rice	Echinochloacolonum L.	Poaceae	Annual					
2	Green bristle grass	Setariavirids	Poaceae	narrow-leaved					
3	Nett leaf	Chenopodium albam L.	Chenopodiaceae						
4	Common purslane	Portulaceoleraceae L.	Portulaceae						
5	Cocklebur	Xanthium strumarium L.	Compositae	Annual					
6	Black night shade	Solanumnigram L	Solanaceae	broad-leaved					
7	Pig weed	Amaranthusascendens L.	Amaranthaceae						
8	Nut-grass	Corchorusolitorius L.	Cyperaceae						
9	Bermuda grass	Cynodondactylon L.	Poeceae	Perennial narrow-leaved					
10	Purplenutsedge	<i>Cyperusrotundus</i> L	Poeceae	i erennar narrow-leaved					
11	Field bindweed	Convolvulus arvensis L.	Convolvulaceae	Perennial broad-leaved					

Table 4. Weed species found in the experimental plots of soybean.

2- Effect of plant spacing and weed control treatments on weeds:

Table (5) shows the effect of soybean plant spacing and weed control treatments on total dry weight of weeds at 60 DAP in 2015 and 2016 seasons. Plant spacing had a significant effect on weed density and total weeds at 60 DAP in 2015 and 2016 seasons. Narrow plant spacing 60×4 cm (P₄) reduced weed density and dry weight of total weeds by 27.50 and 26.68% in 2015 season and 26.38 and 22.91% in 2016 season compared to plant spacing 70×5 cm (P₁), respectively. These results might be due to increase soybean plants/ unit increasing the ability of soybean plants to benefit from light, waterand nutrients, which prevents seedling growth of weeds. Similar results were recorded by EL-Gizawy *et al.* (2012) and Soliman *et al.* (2015). It is observed from data in table 5 that weed

parameters including weed density and dry weight of total narrow and broad leaved weeds at 60 DAP were highly significantly decreased by using weed control treatments compared with the unweeded control in both seasons. The best treatment was W_{10} (weed free) in which all types of weeds were removed. Among other treatments Stomp EC50% + one hand hoeing (W₇) followed by Stomp EC50% + Select super EC 12.5 % (W₅) was the most effective treatment, while W_4 and W_1 were the least effective ones. Similar results were reported by Chandraker and Paikra (2015), Soliman et al. (2015), Manjunath and Hosmath (2016), Paudel et al. (2017). The effect of plant spacing was significant in WCE in the second season only, while insignificant on weed index% in both seasons. P_1 gave the highest WCE value (70.7 and 71.3%) in both seasons, respectively. All weed control treatments effectively increased the WCE whereas weed index was decreased as compared to unweeded check. Again, among all other weed control practices, weed free treatment was superior in reducing the growth parameters of weeds compared to all other treatments, which is reflected in WCE (100%) and in weed Index (0.0)at 60 DAP. It is followed by the treatment with Stomp EC 50% + hand Hoeing (W₇) and Stomp EC50 % + Select super EC 12.5% (W₅).W₇ gave WCE 78.26 and 79.77% and weed index 2.74 and 2.44% in 2015 and 2016 seasons, respectively.

 Table 5. Effect of soybean plant spacing and weed control treatments on weed growth parameters at 60 DAP in 2015 and 2016 seasons.

Treatments	weed density (no. m ⁻²)		Total dry weight of weeds (g m ⁻²)		Weed control efficiency (%)		Weed index (%)	
	2015	1016	2015	2016	2015	2016	2015	2016
P- Plant Spacing (cm):					-			
P ₁ : 60 cm × 4 cm 1 side = 175.000 plant fed ⁻¹	70.43	68.12	30.52	28.34	70.70	71.32	11.03	10.94
P ₂ : 60 cm × 5 cm 1 side = 140.000 plant fed ⁻¹	86.07	83.44	37.11	31.08	70.32	71.81	11.42	11.65
P ₃ : 70 cm × 4 cm 1 side = 150.000 plant fed ⁻¹	77.72	73.92	33.36	31.24	70.02	72.47	11.09	11.01
P ₄ : 70 cm × 5 cm 1 side = 120.000 plant fed ⁻¹	97.14	92.53	41.59	36.76	70.53	69.63	12.40	11.74
LSD (0.05)	0.94	1.19	0.19	0.57	NS	1.11	NS	NS
W- Weed control treatments (L fed ⁻¹):								
W ₁ : Gesagard (50% FW) at the rate 1.0 L	71.06	67.75	30.74	27.07	67.74	68.77	11.02	10.77
W ₂ :Fusilade super (12.5% EC) at the rate 1.0 L	85.42	81.98	36.85	34.28	61.33	60.46	13.30	13.15
W ₃ : Gesagard + Fusilade super	56.09	53.70	24.80	21.25	73.97	75.49	5.14	4.93
W ₄ : Stomp (50% EC) at the rate 1.7 L	68.52	65.65	29.14	27.45	69.49	68.34	8.17	7.71
W ₅ : Stomp + Fusilade	52.47	49.51	23.60	20.32	75.23	76.56	4.51	3.40
W ₆ : Select-Super (12.5% EC) at the rate 1.0 L	84.00	81.18	36.45	33.42	61.75	61.45	12.74	12.36
W ₇ : Stomp + 1 hand hoeing	47.60	44.41	20.72	17.54	78.26	79.77	2.74	2.44
W8: Hand hoeing (2)	55.89	52.83	24.18	21.32	74.62	75.41	4.57	4.42
W9: Unweeded check	224.54	218.54	95.29	86.69	0.0	0.0	43.18	42.69
W ₁₀ : Weed free	0.0	0.0	0.0	0.0	100	100	0.0	0.0
LSD (0.05)	0.58	0.91	0.66	0.57	0.69	0.62	2.79	2.04
F-test	*	*	*	*	*	*	NS	NS

The lowest WCE and weed Index were obtained after treatment with Fusilade super EC 12.5% giving (61.3 and 60.5 %) and (13.3 and 13.2%) in 2015 and 2016 seasons,

respectively. Nandini Devi *et al.* (2016) reported that weed index was high in the control treatment (42.10%) followed by the preemergence application of pendimethalin (19.09%). Our results are in line with those of Sylvestre *et al.* (2013), Chandraker and Paikra (2015),Thakare *et al.* (2015), Akter *et al.* (2016), Aradhana Bal *et al.* (2016), Manjunath and Hosmath (2016), Singh *et al.* (2016) and Paudel *et al.* (2017).

3- Effect of plant spacing and weed control treatments on soybean yield and its components:

a- Plant height, weight of seeds plant⁻¹ and 100-seeds weight:

Results in Table 6 show that the plant height increased significantly from 88.03 to 95.74 cm and from 89.20 to 96.81 cm in 2015 and 2016 seasons when plant density was increased from 120.000 to 175.000 plant fed⁻¹ respectively. This increase in plant height with closer spacing might have resulted due to competition among plants for sunlight. Similar results were observed by other researchers Akond *et al.* (2013), Chaunhan and Opena (2013), El-Far *et al.* (2016), Asmaa *et al.* (2017) and Gulluoglu *et al.* (2016 and 2017).

On the contrary, the highest values of weight of seeds plant⁻¹ (20.37 and 20.59 g) and 100-seeds weight (19.05 and 19.20 g) were obtained from P₄ in 2015 and 2016 seasons, respectively. This is attributed to the increase in distance between ridges and hill which reduced the competition among plants and consequently gave the chance for them to grow properly, then an increase in the weight of seeds plant⁻¹ and 100-seeds weight could be expected. These results are supported by the results of Saitoh (2011), Akond et al. (2013) and Gulluoglu et al. (2016 and 2017).

As shown in Table 6, the different weed control treatments plant height. remarkably affect weight of seeds plant⁻¹ and 100-seeds weight .The three parameters were significantly improved by weed control treatments compared to the unweeded check. Maximum plant height (101.39 and 102.52 cm), weight of seeds plant⁻¹ (24.78 and 25.22 g) and 100-seeds weight (21.26 and 21.44g) were recorded by weed free treatment (W_{10}) in 2015 and 2016 seasons, respectively. It is followed in a descending order by $W_7, W_5, W_8, W_3, W_4, W_1, W_6$ and W_2 . The unweeded control gave the least Sylvesre values. et al.(2013); Hassan(2015); Thakare et al.(2015); Nandini Devi et al.(2016) and Rajkumari et al.(2017a) found similar results.

b- Number of pods plant⁻¹, number of seeds pod⁻¹ and weight of pods plant⁻¹:

Number of pods plant⁻¹, number of seeds pod⁻¹ and weight of pods plant⁻¹ were estimated for each treatment and included in Table 6. The distance between plants had a significant effect on pod characters. No. of pods plant⁻¹ increased from 40.24 to 49.18 and from 40.94 to 50.49 pod plant⁻¹, No. of seeds pod⁻ ¹ from 2.0 to 2.53 and from 2.11 to 2.70 seed and weight of pods $plant^{-1}$ from 22.86 to 26.91 g and from 23.19 to 28.26 g, as plant spacing increased from 60×4cm (P_1) to 70×5cm (P_4) in 2015 and 2016 seasons, respectively. The increase in same characters due to increase space between ridges and hills may be attributed to the increased availability of nutrients and sunlight for soybean plants than narrowing ridges and plant spacing. These results are in agreement with findings of Seadh and Abido (2013), Hassan (2015), Asmaa *et al.* (2017), Gulluoglu *et al.* (2016 and 2017), Andres *et al.* (2018) and Matsuo *et al.* (2018).

Concerning the effect of weed control treatments on these characters (Table 6), it has been found that the weed free treatment (W10) was superior in No. of pod plant⁻¹ indicating 62.43 and 62.63, No. of seeds pod-1 2.90 and 3.00 and weight of pods $plant^{-1}$ 34.5 and 34.7 g in 2015 and 2016 seasons, respectively, which is statistically at par with using Stomp EC50% + one hand hoeing (W7) (No. of pod plant⁻¹ were 56.49 and 57.35, No. of seeds pod-1 2.82 and 2.91 and weight of pods plant⁻¹33.45 and 33.63 g in 2015 and 2016 seasons, respectively).

Both treatments were followed by Stomp EC50% + Select-super EC12.5% (W5) and hand hoeing twice (W8) which was superior to weed control by using Fusilade super EC 12.5% (W2) that was the least effective one among treatments, followed by the unweedwed check. These results are similar to those obtained by Seadh and Abido (2013), Akter *et al.* (2016) and Hosseini *et al.* (2016).

c- Seed, straw and biological yield.

Data in Table (6) indicate that the yields of soybean increased steadily by increasing plant density from 120.000 (P₄) to 175.000 (P₁) plant fed⁻¹. Seed yield, straw yield and biological yield have been gradually raised from 1.22, 2.33 and 3.56 (P4) to 1.31, 2.46 and 3.80 (P₁) ton fed⁻¹ in 2015 season and from 1.25, 2.36 and 3.61 (P₄) to 1.32, 2.48 and 3.80 (P1) ton fed⁻¹ in 2016 season, respectively. The same results were reported by Seadh and Abido (2013), Hassan (2015), El-Far *et al.* (2016) Asmaa *et al.* (2017), Gulluoglu *et al.* (2017) and Matsuo *et al.* (2018).

Regarding the effect of weed control treatments on the seeds yield, straw yield and biological yield (Table 6), data reported that the three parameters have been increased by all weed control treatments. The best results were obtained by W10 followed by W7, W5, W8, W3, W4, W1, W6 and W2 treatments in both seasons.

This increase is reflected on soybean yields compared to the unweeded control (Table 7). The highest increasing % of seed yield (106%), straw yield (50%) and biological yield (66%) resulted from W10 followed by W7, W5, W8, W3, W4, W1, W6 and W2 treatments. These results are in line with those obtained by Chandraker and Paikra (2015), Soliman *et al.* (2015), Manjunath and Hosmath (2016), Paudel *et al.* (2017) and Kulal *et al.* (2017).

4- Effect of plant spacing and weed control treatments on quality studies:

Protein content % and protein yield:

Protein % and protein yield of soybean seeds were significantly influenced due to different plant spacing (Table 8). The highest protein content % was obtained by using plant spacing of 70×5 cm (P₄) followed by 60×5 cm (P₂), 70×4 cm (P₃) and 60×4 cm (P₁) in decreasing order. P₄ gave a superiority of protein yield when compared with other spacing in the two seasons. These results could be attributed to that in wider spacing the plants were able to from more metabolites to synthesize more protein in the seeds and the activity of protein synthesis was higher than at closer spacing. Similar results were obtained by Galal (2004), Ibrahim and Kandil (2007), Seadh and Abido (2013) and Andres *et al.* (2018).

The data regarding the protein percent and protein yield in soybean seed as influenced by weed control treatments are presented in (Table 8). The results indicated significant highest protein content in treatment W_{10} (38.61 and 38.69 %), followed by treatment W_7 (38.33 and 38.51 %), W_5 (38.04 and 38.24 %) and W_8 (37.86 and 38.03 %) in 2015 and 2016 seasons, respectively. Significantly lowest protein content was estimated in unweeded treatment (34.61 and 34.68 %) in both seasons. These results could be attributed to the better N utilization by soybean plants under these treatments that favored by effective elimination of weeds. Weed infestation for whole growing season in unweeded plots was instrumental in reduced protein content in same plots. This result supports the results of Shaikh et al. (2010), Peer et al. (2013), Singh (2015), Soliman et al. (2015) and Rajkumari et al. (2017a). The same data showed that all treatments increased protein vield kg fed⁻¹ when compared with the unweeded treatment (Table 8). This may be probably due to the better weed control practices resulting improvement in seed yield. However, Singh et al. (2014) did not find significant variation in protein content of the seed soybean due to the weed control practices.

Oil content % and oil yield:

Data presented in (Table 8) show that increasing plant spacing 60×4 cm (P₁) to 70×5 cm (P₄) significantly decreased the seed oil % in soybean. The oil % values varied between 20.76 to 20.11 % in 2015 and 20.89 to 20.37 % in 2016, as well as oil yield fed⁻¹ 335.54 to 308.61 kg fed⁻¹ in 2015 and 340.72 to 316.78 kg fed⁻¹ in 2016. The highest value of the seed oil % (20.76 and 20.89 %) was obtained when the plant spacing of 60×4 cm (P₁) was used followed by plant spacing 70×5 cm (P₄). The highest values of oil yield fed⁻¹ at the closer spacing may be due to the highest seed yield fed⁻¹ with the same spacing. These results are in harmony with those recorded by Galal (2004), Ibrahim and Kindil (2007), Gulluoglu et al. (2016) and Andres et al.(2018). On the other hand, Gulluoglu et al. (2017) found that the oil content of soybean was insignificant in plant spacing in two seasons.

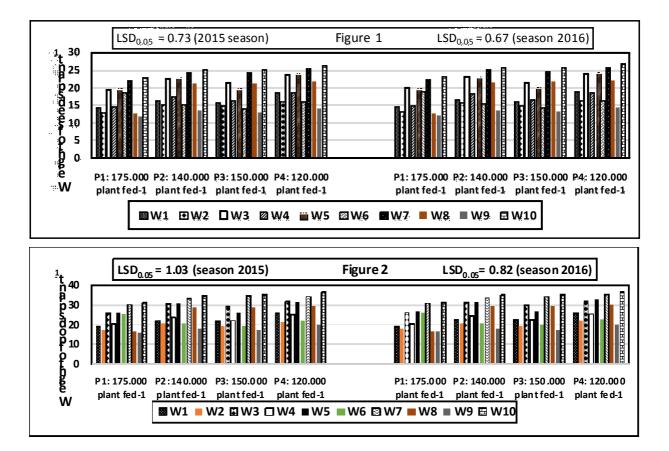
All the weed control practices gave significantly higher oil content

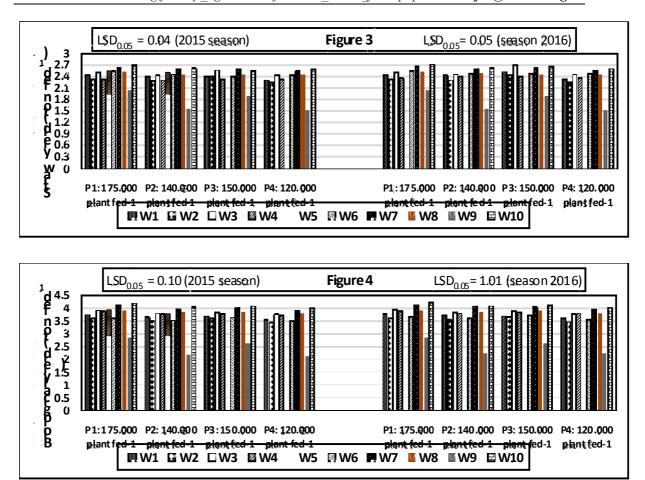
and oil yield compared to the unweeded treatment. The maximum oil content was recorded to W_{10} (22.51) and 22.71%) and W_7 (22.23 and 22.43%) in both seasons. It was at par with W_5 (22.01 and 22.20%) and W_8 (20.95 and 21.17%) followed by W_3 (20.48 and 20.66%) in 2015 and 2016 seasons, respectively. Meanwhile, the lowest oil content was obtained from the unweeded treatment. Oil yield losses from weed infestation reached 211.10 and 212.35 kg oil fed⁻¹ (48.50 and 48.30%) as compared to the oil estimated from usingweed free for whole season W_{10} (356.89 and 364.27 kg fed⁻¹) in 1st and 2nd seasons, respectively. Therefore, elimination of weeds which increased oil vield may be due to effectiveness of the used weed control treatments. Increased oil content and oil yield fed⁻¹ in soybean under weed control treatments has also been reported by Shaikh et al. (2010), Peer et al. (2013), Singh (2015), Soliman et al. (2015) and Rajkumari et al. (2017a).

 Table 8. Effect of plant spacing and weed control treatments on protein and oil content of soybean crop in 1st and 2nd seasons.

content of soybean crop in 1 and 2 seasons.										
Treatments	Protein %		Protein yeild (kg fed ⁻¹)		Oil content %		Oil yeild (kg fed ⁻¹)			
		2015/2016		2015/2016		2015/2016		/2016		
P- Plant Spacing (cm):										
$P_1: 60 \text{ cm} \times 4 \text{ cm} 1 \text{ side} = 175.000 \text{ plant fed}^{-1}$	36.91	37.05	594.51	603.77	20.76	20.89	335.54	340.72		
$P_2: 60 \text{ cm} \times 5 \text{ cm} 1 \text{ side} = 140.000 \text{ plant fed}^{-1}$	37.38	37.57	585.58	593.38	20.31	20.48	317.86	324.50		
$P_3: 70 \text{ cm} \times 4 \text{ cm} 1 \text{ side} = 150.000 \text{ plant fed}^{-1}$	37.12	37.34	589.29	597.51	20.55	20.75	326.99	333.15		
$P_4: 70 \text{ cm} \times 5 \text{ cm} 1 \text{ side} = 120.000 \text{ plant fed}^{-1}$	37.60	37.78	575.87	586.22	20.11	20.37	308.61	316.78		
LSD (0.05)	0.09	0.06	8.35	6.15	0.18	0.06	4.13	3.65		
W- Weed control treatments (L fed ⁻¹):										
W ₁ : Gesagard (50% FW) at the rate 1.0 L	36.95	37.11	575.18	584.09	19.49	19.65	296.34	301.18		
W ₂ :Fusilade super (12.5% EC) at the rate 1.0 L	36.49	36.69	554.16	562.43	19.08	19.27	297.14	303.32		
W ₃ : Gesagard + Fusilade super	37.49	37.68	618.52	629.59	20.48	20.66	340.12	346.44		
W ₄ : Stomp (50% EC) at the rate 1.7 L	37.32	37.54	599.69	609.27	19.72	19.91	301.43	307.82		
W ₅ : Stomp + Fusilade super	38.04	38.24	641.87	653.57	22.01	22.20	368.14	374.27		
W ₆ : Select-Super (12.5% EC) at the rate 1.0 L	36.89	37.09	569.44	572.39	19.40	19.63	311.97	319.50		
W ₇ : Stomp + 1 hand hoeing	38.33	38.51	652.83	662.90	22.23	22.42	371.78	382.10		
W ₈ : Hand hoeing (2)	37.86	38.03	632.27	643.42	20.95	21.17	356.89	364.27		
W9: Unweeded check	34.53	34.68	343.29	350.27	18.44	18.61	183.79	188.31		
W ₁₀ : Weed free	38.61	38.79	675.89	684.30	22.55	22.71	394.89	400.66		
LSD (0.05)	0.40	0.46	26.65	24.03	0.56	0.56	15.60	15.09		
F-test	NS	NS	NS	NS	NS	NS	NS	NS		

5- Effect of interaction:


Data in Table 9 presents the interaction effect between plant spacing and weed control treatments. It was a significant effect on weed density, total dry weeds and weed control efficiency (WCE) at 60 DAP in both seasons. All weed control treatments caused significant reductions in No. of weeds, compared to the unweeded check. The greatest reduction in weed density and dry weight of total weeds was produced from plant spacing P_1 and weed control treatment W_7 followed by P_3 with W_7 as compared to the low plant density P_4 with W_7 in both seasons. This may be due to increasing competition ability of soybean in utilization nutrients, water and sunlight due to increasing soybean plants units⁻¹ and decreased weed plants. Weed free plots (W_{10}) in all plant space treatments recorded the greatest WCE followed by $P_1 \times W_7$.


Table 9. Effect of interaction between plant spacing and weed control treatments on weed density, total dry weight of weeds and weed control efficiency at 60 DAP in 2015 and 2016 seasons.

	Treatments			Total day	weight of	Wood	antual
Plant spac-		Weed	density		(g m ⁻¹)	Weed control efficiency %	
ing	Weed control treatments	2015	2016	2015	2016	2015	2016
	W ₁ : Gesagard (50% FW) at the rate 1.0 L	2015 58.27	2016 56.00	2015 25.53	2016 23.68	2015 59.10	2016 59.92
	W ₁ : Gesagard (30 % F W) at the rate 1.0 L W ₂ :Fusilade super (12.5% EC) at the rate 1.0 L	76.78	73.47	33.60	31.04	68.92	69.41
	W_2 : Fushade super (12.5 % EC) at the rate 1.0 E W_3 : Gesagard + Fusilade super	47.26	44.33	21.19	19.33	75.28	77.36
P ₁ :	W ₄ : Stomp (50% EC) at the rate 1.7 L	58.07	56.20	25.24	24.53	62.31	61.31
60×4cm	W ₄ : Stomp (50 % EC) at the rate 1.7 E	43.35	41.84	18.36	16.88	77.64	78.21
175.000	W ₆ : Select-Super (12.5% EC) at the rate 1.0 L	71.64	69.90	30.96	29.95	69.27	68.32
Plant fed ⁻¹	W_6 : Scheet Super (12.5 % EC) at the rate 1.6 E W_7 : Stomp +1 hand hoeing	39.31	37.73	17.33	14.70	78.91	81.02
	W ₈ : Hand hoeing (2)	46.89	45.67	20.31	17.53	74.20	75.03
	W ₃ : Unweeded check	192.33	187.90	82.15	77.45	0.0	0.0
	W ₁₀ : Weed free	0.0	0.0	0.0	0.0	100	100
	W ₁ : Gesagard (50% FW) at the rate 1.0 L	78.55	76.67	34.39	26.42	62.50	63.53
	W_2 :Fusilade super (12.5% EC) at the rate 1.0 L	86.14	83.10	37.42	32.71	62.32	68.93
	W_2 : Gesagard + Fusilade super	58.11	56.93	25.25	20.12	74.56	76.56
	W ₄ : Stomp (50% EC) at the rate 1.7 L	70.62	66.87	29.80	27.14	62.32	61.54
	W_5 : Stomp + Fusilade super	54.86	52.62	23.30	19.07	75.84	77.58
P ₂ :	W_6 : Select-Super (12.5% EC) at the rate 1.0 L	85.16	82.63	37.20	31.01	69.96	68.09
60×5cm	W ₇ : Stomp + 1 hand hoeing	49.79	46.37	22.22	18.23	77.60	78.56
140.000	W ₈ : Hand hoeing (2)	56.91	54.50	25.24	19.93	74.54	76.34
Plant fed ⁻¹	W ₉ : Unweeded check	234.50	231.27	99.19	85.05	0.0	0.0
	W ₁₀ : Weed free	0.0	0.0	0.0	0.0	100	100
	W ₁ : Gesagard (50% FW) at the rate 1.0 L	63.21	60.95	27.04	25.78	61.13	63.31
	W ₂ :Fusilade super (12.5% EC) at the rate 1.0 L	84.64	81.23	36.35	33.17	69.69	71.13
	W ₃ : Gesagard + Fusilade super	51.00	46.80	23.94	20.65	75.61	77.36
	W ₄ : Stomp (50% EC) at the rate 1.7 L	60.69	56.17	26.77	25.35	58.86	62.21
	W ₅ : Stomp + Fusilade super	52.58	49.43	21.56	19.88	74.16	77.40
P _{3:}	W ₆ : Select-Super (12.5% EC) at the rate 1.0 L	80.62	77.37	34.34	32.21	69.40	70.64
70×4cm	W ₇ : Stomp + 1 hand hoeing	53.39	50.54	19.03	16.49	72.89	76.48
150.000	W ₈ : Hand hoeing (2)	44.46	41.10	22.81	19.84	78.46	81.22
Plant fed ⁻¹	W ₉ : Unweeded check	208.89	201.73	88.36	87.80	0.0	0.0
	W ₁₀ : Weed free	0.0	0.0	0.0	0.0	100	100
	W ₁ : Gesagard (50% FW) at the rate 1.0 L	86.72	82.17	36.27	32.79	62.09	59.74
	W ₂ :Fusilade super (12.5% EC) at the rate 1.0 L	98.15	94.00	42.25	38.82	67.46	66.01
	W ₃ : Gesagard + Fusilade super	66.78	62.77	28.32	23.96	74.14	74.20
P _{4:}	W ₄ : Stomp (50% EC) at the rate 1.7 L	82.20	78.57	35.57	32.35	63.17	60.75
60×5cm	W ₅ : Stomp + Fusilade super	60.69	56.77	26.20	22.92	76.49	76.23
120.000	W ₆ : Select-Super (12.5% EC) at the rate 1.0 L	94.44	90.97	41.05	37.86	68.09	66.45
Plant fed ⁻¹	W ₇ : Stomp + 1 hand hoeing	56.84	52.43	24.32	20.75	78.19	78.49
	W ₈ : Hand hoeing (2)	66.00	61.84	28.83	24.89	74.59	75.16
	W9: Unweeded check	262.45	253.27	111.47	96.47	0.0	0.0
	W ₁₀ : Weed free	0.0	0.0	0.0	0.0	100	100
	L.S.D 0.05	1.17	1.81	1.32	1.13	1.38	1.24

Figures (1&2) illustrate that the interaction between plant spacing and weed control treatments have a significant effect on weight of seeds plant-1, weight of pods plant⁻¹, straw yield and biological yield in both seasons. The combination of the low plant density (P_4 =120.000 plant fed⁻¹) and weed free treatment (W_{10}) recorded the highest values of weight of seeds plant⁻¹ (26.25 and 26.61 g)and weight of pods plant⁻¹ (36.67 and 36.60 g) in 1st and 2nd seasons, respectively.

 $P_1 \times W_{10}$ gave the greatest values of straw and biological yields (2.70 and 2.72 ton fed⁻¹) and (4.19 and 4.22 ton fed⁻¹), in 2015 and 2016 seasons respectively,(figures 3&4). The second best interaction treatment was $P_1 \times W_7$, followed by $P_3 \times W_{10}$ in both seasons, while planting 120.000 plant fed⁻¹ with unweeded control treatment gave the lowest straw and biological yields in two seasons. These results are coincidence with those obtained by Asmaa *et al.* (2017).

Figures (1, 2, 3 and 4): Weight of seeds plant⁻¹, weight of pods plant⁻¹, straw yield (ton fed⁻¹) and biological yield (ton fed⁻¹) as affected by the interaction between plant spacing and weed control treatments during 2015 and 2016 seasons.

6- Economic of soybean crop:

Data in Table 10 show that the total cost (L.E fed⁻¹), which includes land preparation, sowing, fertilization, irrigation, insect control, harvesting and rental cost of land fed⁻¹ $(2281 \text{ L.E fed}^{-1}) + \text{cost of different}$ weed control treatments. The average of gross income L.E fed⁻¹ of soybean yield ranged from about 2950.512 to 7077.708 L.E fed⁻¹ with about interaction between $P_2 \times W_9$ and with interaction between $P_1 \times W_{10}$ as lower and higher values. Moreover, net income of soybean yield fed⁻¹ reached fed⁻¹with 4205.300 L.E about

interaction between $P_1 \times W_7$, while, the lowest values with interaction between $P_{2} \times W_{9}$ about 669.512 L.E fed⁻ ¹. The higher net income was due to highest weed control efficiency recorded in these treatments, highest growth attributes and highest seed yield of soybean. Application of weed free (W_7) + plant spacing 60×4 cm (P₁) recorded higher B: C ratio (2.521), and P₁×W₆ (2.456) followed by $P_3 \times W_7$ (2.454) than other treatments. These results are in conformity of those of Sylvestre et al. (2013); Thakare et al. (2015) and Rajkumari *et al.* (2017b).

Treatments			on fed ⁻¹)	Tedal seat	Gross	Net income	D. C
Plant spacing	Weed control treatments	Seed	Straw	Total cost (L.E fed ⁻¹)	income (L.E fed ⁻¹)	(L.E fed ⁻¹)	B: C Ratio
	W ₁ : Gesagard (50% FW) at the rate 1.0 L	1.300	2.450	2513.000	6058.200	3545.200	2.411
	W ₂ :Fusilade super (12.5% EC) at the rate 1.0 L	1.025	2.301	2546.000	4840.172	2294.172	1.901
	W ₃ : Gesagard + Fusilade super	1.422	2.511	2778.000	6597.684	3819.684	2.375
P ₁ :	W ₄ : Stomp (50% EC) at the rate 1.7 L	1.410	2.352	2672.000	6518.304	3846.304	2.439
60×4 cm	W ₅ : Stomp + Fusilade super	1.424	2.550	2776.000	6613.064	3837.064	2.382
175.000 Plant fed ⁻¹	W ₆ :Select-Super (12.5% EC) at the rate 1.0 L	1.392	2.613	2641.000	6485.148	3844.148	2.456
1	W ₇ : Stomp + 1 hand hoeing	1.499	2.713	2761.000	6966.300	4205.300	2.521
	W ₈ : Hand hoeing (2) W ₉ : Unweeded check	1.417 0.792	2.531 2.050	2781.000 2281.000	6579.444 3786.712	3798.444 1505.712	2.366
	W ₁₀ : Weed free	1.523	2.030	3281.000	7070.708	3789.708	2.155
	Mean of P ₁	1.310	2.479	2743.900	6106.548	3362.648	2.225
	W1: Gesagard (50% FW) at the rate 1.0 L	1.272	2.401	2513.000	5558.364	3045.364	2.223
	W_1 : Gesagard (60% 1 %) at the rate 1.0 L W_2 :Fusilade super (12.5% EC) at the rate 1.0 L	1.068	2.301	2546.000	5026.620	2480.620	1.974
	W ₃ : Gesagard + Fusilade super	1.362	2.450	2778.000	6327.032	3549.032	2.278
	W ₄ : Stomp (50% EC) at the rate 1.7 L	1.335	2.351	2672.000	6192.932	3520.932	2.318
	W ₅ : Stomp + Fusilade super	1.387	2.550	2776.000	6014.032	3238.032	2.166
P ₂ :	W ₆ : Select-Super (12.5% EC) at the rate 1.0 L	1.219	2.500	2641.000	5715.584	3074.584	2.164
60×5 cm	W ₇ : Stomp + 1 hand hoeing	1.422	2.621	2761.000	6616.604	3855.604	2.396
140.000 Plant fed ⁻¹ 2	W8: Hand hoeing (2)	1.350	2.507	2781.000	6284.804	3503.804	2.260
i iunicicu 2	W9: Unweeded check	0.617	1.600	2281.000	2950.512	669.512	1.294
-	W ₁₀ : Weed free	1.468	2.614	2881.000	6814.856	3933.856	2.365
	Mean of P ₂	1.250	2.390	2743.900	5831.080	3088.080	2.126
	W ₁ : Gesagard (50% FW) at the rate 1.0 L	1.227	2.451	2513.000	5741.844	3228.844	2.285
	W ₂ :Fusilade super (12.5% EC) at the rate 1.0 L	1.173	2.411	2546.000	5500.820	2954.820	2.161
	W ₃ : Gesagard + Fusilade super	1.247	2.714	2778.000	5856.600	3078.600	2.108
	W ₄ : Stomp (50% EC) at the rate 1.7 L	1.364 1.450	2.352 2.513	2672.000 2776.000	6318.848 6719.436	3646.848 3943.436	2.369 2.421
P3:	W ₅ : Stomp + Fusilade super W ₆ : Select-Super (12.5% EC) at the rate 1.0 L	1.430	2.513	2641.000	5739.156	3098.156	2.421
70×4 cm	W ₆ : Select-Super (12.5% EC) at the rate 1.0 L W ₇ : Stomp + 1 hand hoeing	1.459	2.612	2761.000	6775.488	4014.488	2.173
150.000	W ₈ : Hand hoeing (2)	1.437	2.501	2781.000	6617.644	3836.644	2.380
Plant fed ⁻¹	W ₉ : Unweeded check	0.724	1.912	2281.000	3468.128	1187.128	1.520
	W ₁₀ : Weed free	1.487	2.650	2881.000	6903.432	4022.432	2.396
	Mean of P ₃	1.278	2.453	2743.900	5963.324	3220.324	2.174
	W ₁ : Gesagard (50% FW) at the rate 1.0 L	1.265	2.302	2513.000	5990.984	3367.984	2.384
	W2:Fusilade super (12.5% EC) at the rate 1.0 L	1.075	2.254	2546.000	5048.888	2508.888	1.983
	W ₃ : Gesagard + Fusilade super	1.294	2.451	2778.000	6032.356	3254.356	2.171
P4:	W ₄ : Stomp (50% EC) at the rate 1.7 L	1.308	2.350	2672.000	6075.688	3403.688	2.274
70×5 cm	W ₅ : Stomp + Fusilade super	1.384	2.500	2776.000	6431.024	3655.024	2.317
120.000 Plant fed ⁻¹	W ₆ :Select-Super (12.5% EC) at the rate 1.0 L	1.192	2.450	2641.000	5583.276	2942.276	2.114
i lant leu	W ₇ :Stomp + 1 hand hoeing	1.400	2.550	2761.000	6509.000	3748.000	2.357
	W ₈ : Hand hoeing (2)	1.372	2.501	2781.000	6379.164	3598.164	2.294
	W9: Unweeded check	0.647	1.502	2281.000	3063.736	782.736	1.343
	W ₁₀ : Weed free	1.410	2.602	2881.000	6561.304	3680.304	2.277
	Mean of P ₄	1.235	2.346	2743.900	5758.472	3015.472	2.099

Table 10. Effect of plant spacing and weed control treatments on economics of soybean crop as seasons average.

Conclusion

From this study, it could be recommended that weed control by Stomp 50% EC+one hand hoeing, Gesagard 50% FW + Fusilade super (12.5%EC) and hand hoeing twice and sowing soybean plants *var*. Giza 111 by 175000 plant fed⁻¹ (60×4 cm between plants) produce the highest grain yield and quality under the environmental conditions of Minia Governorate, Egypt.

References

- Acikgoz, E.; Sincik, M.; Karasu, A.; Tongel, O. and Wietgrefe, G. (2009). Forage soybean production for seed in mediterranean environments. Field Crop Recearch 110: 213-218.
- Andres, F.; Alvadi, A.B. and Flavia, W. (2018). Soybean agronomic performance in response to seeding rate and phosphate and potassium fertilization. RevistaBrasileira de

Engenharia Agricola e Ambiental, 22(3): 151-157.

- Agriculture Statistical (2015). Summer & Nile Crops. Agriculture Statistical and Economic Affairs Sector, 2nd Ed., Ministry of Agriculture and Land Reclamation, Egypt.
- Akond, A.G.M.; Bobby, M.; Bazzelle, R.; Clark, W.; Kantartzi, K.M. and Kaddem. A. (2013). Effect of two row space on several agronomic traits in soybean [*Glycine max* (L.) Merr.]. Ttlas J. of Plant Biology 1(2):18-23.
- Akter, N.; Ruhul Amin, A.K.M.; Masum, S.M.andHaque, M.N. (2016).
 Effect of sowing dates and weed control methods on yield components of soybean [*Glycine max* L. Merrill.].Pak. J. Weed Sci. Res., 22 (4):527-541.
- A.O.A.C. (1990). Official Methods of Analysis of Association of Official Agriculture Chemists. 12th Edition, Washington, D.C.
- Ariunaa, O.; Otgonsuren, M. and Bayarsukh, N. (2016). Effect of chemical weed control of soybean (*Glycine* max L.) field in Mongolia. Int. J. Adv. Res. Bio. Sci., 3(1): 192-198.
- Aradhana Ball; Bazaya, B.R.; Lekh Chand and Swami, S. (2016). Weed management in soybean (*Glycine max* L.). The Bioscan 11 (1): 255-257.
- Asmaa, M. Hamoda; Sary, G.A.; ELsayedShokr and Roshdy, A. (2017). Effect of some weed control treatments and plant density on two soybean varieties and associated weeds. Annals of Agric. Sci., Moshtohor, 55(1): 1-10.
- Balyan, R.S. and Malik, R.K. (2003). Effect of post-emergence herbicide for weed management in soybean (*Glycine max* L.)Indain J. Weed Sci., 35(1&2): 62-66.
- Bhagirath, S.C. and Jhoan L. Opena (2014). Effect of plant spacing on

growth and grain yield of soybean. American J. Plant Sci., 4: 2011-2014.

- Caliskan, S.M.; Aslan, M.; Uremis, I. and Caliskan, M.E.(2007). The effect of row spacing on yield and yield components of full season and double cropped soybean. Turkish J Agric. & Forestry 31: 147-154.
- Cassileth,B.r. and Vickers, A.J. (2003). Soy: an anticancer agent in wide use despite some troubling data. Cancer Invest. 21(5): 817-818.
- Chandraker, A.K. and Paikra, P.R. (2015). Effect of integrated weed management on weed dynamics of soybean [*Glycine max* (L.) Merrill] under Chhattisgarh plain. Indian J. Agric. Res., 49(1): 53-58.
- Chaunhan, B.S. and Opena, J.L. (2013). Effect of plant spacing on growth and grain yield of soybean. American J. Plant Sci., 4: 2011-2014.
- El-Far, E.A.; El-Nagar, G.R.; Salib, S.R. and Kalafalla, M.A.B. (2016). Response of some soybean genotypes to planting date and plant density. Assiut J. Agric. Sci., 47(5): 1-11.
- El-Gizawy, N.KH.B.; Fadlallah, A.M.A. Hassanein and Soliman, I.E. (2012). Estimation of the critical period for weed control in soybean (*Glycin max* L.) as influenced by plant density. J. Plant Production, Mansoura Univ., 3(9): 2375-2394.
- Galal, A.H. (2004). Effect of weed control treatments and hill-spacing on soybean and associated weeds. Acta Agronomica Hungarica, 52(1): 81-93.
- Gill, G.S. and Vijay Kumer, K. (1969). "WeedIndex" A new method for reporting weed control trails. Indian J. of Agron., 14:96-98.
- Gomez, K.A. and Gomez, A.A. (1984). Statistical Procedures for Agriculture Research. A Wiley-Inter Sci-

ence Publication, John Wiley and Sons, Inc. New York, USA.

- Gulluoglu,L.; Bakal, H.; EL-Sabagh, A. and Arioglu, H. (2016). The effects of twin-row planting pattern and plant population on seed yield components of soybean at late double-cropped planting in Cukurova Region. Turk J. Field Crops 21(1): 59-65.
- Gulluoglu, L.; Bakal, H.; EL-Sabagh, A. and Arioglu, H. (2017). Soybean managing for maximize production: Plant population density affects seed yield and some agronomical traits in main cropped soybean production. J. of Experimental Biology & Agric. Sci., 5(1): 31-37.
- Hassan,A.A.A. (2015). Study of some herbicides and plant density on the growth and soybean yield. Research J. of Pharmaceutical, Biological and Chemical Sci., 6(1): 115-126.
- Heady, E.O. and Dillon, J.L. (1961). Agricultural production function. Library of Congress catalog card number: 60-11128, Iwoa State University Press.
- Hosseini, S.Z.; Firouzi, S.; Aminpanah, H. and Sadeghnejhad, H.R. (2016). Effect of tillage system on yield and weed populations of soybean (*Glycine max* L.). An. Acad. Bras. Cienc., 88(1): 377-384.
- Ibrahim, S.A. and Kandil, H. (2007). Growth, yield and chemical constituents of soybean (*Glycin max* L.) plants as affected by plant spacing under different irrigation intervals. Res. J. Agric. & Biol. Sci. 3(6):657-663.
- Jadhav, J.B. (2007). Effect of herbicides and cropweed competition on physiological aspects in soybean (Glycine max L.). Master thesis, Univ. of Agric. Sci. Dharwad.

- Kanase, A.A.; Mendhe, S.N.; Khawale V.S.; Jarande, N.N. and Mendhe, J.T.(2006). Effect of integrated nutrient management and weed biomass addition on growth and yield of soybean. J.Soils Crops. 16(1): 236-239.
- Knezevic, S.Z.; Evans, S.P. and Mainz, M. (2003). Row spacing influences the critical timing for weed removal in soybean (*Glycine max*). Weed Technology, 17(4): 666-673.
- Kulal, D.A.; Dhaigude, G.S. and Adat, S.S. (2017). Evaluation of efficacy of post-emergence herbicides for weed control in soybean under Marathwada region. Internat. J. Agric.Sci., 13(1): 53-55.
- Lamptey, S.; Yeboah, S.; Sakodie, K. and Berdjour, A. (2015).Growth and yield response of soybean under different weeding regimes. Asian J. Agric. and Food Sci., 3(2): 155-163.
- Manjunath, N.C. and Hosmath, J.A. (2016). Effect of sequential application on weed dynamics and yield of soybean [*Glycine max* (L.) Merrill]J.Farm Sci.,29(2):187-189.
- Matsuo, N.; Tetsuya, Y.; Yoshitake, T.; Koichiro, F. and Makita, H. (2018). Effect of plant density on growth and yield of new soybean genotypes grown under early planting condition in southwestern Japan. Plant Production Science, P: 1-10
- Nandini Devi, K.; Lenin Singh, K.H.; AranghaMangang, C.N. and Brajendra Singh, N. (2016). Effectof weed control practices on weed dynamics, yield and economics of soybean [*Glycine max* (L.) Merrill]. Legume Research, 39 (6): 995-998.
- Pandya, N.; Chouhan, G.S. and Nepalla, V. (2005). Effect of varieties, crop geometries and weed management on nutrient uptake by soybean

(*Glycine max* L.) and associated weeds. Indian J. Agron., 50(3): 218-220.

- Paudel, P.; Singh, R.S.; Pandey, I.B. and Prasad, S.S. (2017). Effect of different weed management practices on weed dynamic, yield and economics of soybean production. Azarian J. Agric., 4(2): 54-59.
- Peer, F.A.; Hassan, B.; Lone, B.A.; Qayoom, S.; Ahmad, L. and Khanday, B.A. (2013). Effect of weed control methods on yield and yield attributes of soybean. Afr. J. Agric. Res., 8(48): 6135-6141.
- Rajkumari; Khaswan, S.L.; Kumar, A.;
 Kumar, K. and Thori, S.S. (2017a).
 Effect of different tillage practices and weed management on weed dynamics, productivity and quality of soybean [*Glycine max* (L.) Merrill]. Internat. J. Chemical Studies.5(4): 1695-1697.
- Rajkumari; Khaswan, S.L.; Kumar, A.; Kumar, K. and Thori, S.S. (2017b). Influnce of different tillage and weed management practices on growth parameters and chlorophyll content of soybean in sub-humid Rajasthan. J. Pharmacognosy & Phytochemistry 6(4): 1793-1796.
- Saitoh, K. (2011). Effect of row-spacing and plant density on podding and yield performance of early soybean cultivar "Enrei" with reference to raceme order. In: El-Shemy, H (Ed.). Agric. & Biological Sci. Soybean Physiology and Biochemistry. pp: 275-288.
- Sawant, A.C. and Jadav, S.N. (1985). Efficiency of different herbicides for weed control in transplanted rice in Konkan. Indian Journal of Weed Science, 17(3): 35-39.
- Seadh, S.E. and Abido, W.A.E. (2013). How soybean cultivars canopy affect yield and quality. J. of Agron.: 1-7.

- Shaikh, A.A., Desal, M.M., Shinde, S.B. and Tambe, A.D. (2010). Yield and quality of soybean [*Glycine max* (L.) Merrill] as influenced by integrated weed management. Internat. J. Agric. Sci., 6(2):534-536.
- Singh, M.; Jagdeesh, M.; Verma, A.K.; Chouhan, S.S. and Gour, G.L. (2016). Assessment of weed control treatments on yield of soybean (*Glycine max* L.) at tribal jhabua hills zone of Madhya Pradesh. Inter. J. Agric. Sci. and Res., 6(6): 23-28.
- Singh, Neelu (2015). Effect of herbicides on physiological parameters, growth, yield andqualtiy of soybean (*Glycine max* L.). Master thesis, Jabalpur, Madhya Pradesh.
- Singh, Pratap, V.; Singh, S.P.; Kumar, A.; Banga, A.; Tripathi, N. and Rekha (2014). Performance of quizalofop-p-ethyl 5% EC against weeds and yield of soybean. Soybean Research, 12(2): 120-126.
- Soliman, I.E.; Morsi, A.R. and Azza, E.K. (2015). Effect of competitive abilities of some soybean genotypes, plant density and weed control treatments on soybean (*Glycine max* L.) and its associated weeds. J. Plant Production, Mansoura Univ., 6(8): 1413-1429.
- Sylvestre, H.; Kalyana Murthy, K.N.; Shankaralingappa, B.C.; Sanjay, M.T. and Ramachandra, C. (2013). Effect of pre and post-emergence herbicides on weed dynamics, growth and yield of soybean (*Glycine max* L.). Adv. Appl . Sci. Res., 4(4): 72-75.
- Thakare, S.S.; Deshmukh, J.P.; Shingrup, P.V.; Pawar, P.M. and Ghlop, A.N. (2015). Efficacy of different new herbicides against weed flora in soybean (*Glycine max* L.). Plant Archives 15(1): 217-220.

تأثير مسافات الزراعة ومعللات مقلومة المشناش عىجودة ومصول فحول لصويا وصفت المشناش المصلحبة لمه تعتظوف مصر الوسطى أحمد صلاح محمد مرسى و محمد محمود طنطاوى فسم المحاصيل ـ كلية الزراعة والموارد الطبيعية ـ جامعة أسوان ـ أسوان ـ مصر فسم وقاية النبات ـ كلية الزراعة ـ جامعة المنيا ـ المنيا ـ مصر

الملخص

أجريت تجربتان حقليتان بمزرعة كلية الزراعة – جامعة المنيا خلال موسمي الزراعة لصيف ٢٠١٦، ٢٠١٦ بهدف دراسة تأثير مسافات الزراعة ومعاملات مكافحة الحشائش على جودة ومحصول فول الصويا والحشائش المصاحبة له. نفذت التجارب باستخدام تصميم الشرائح المتعامدة في ثلاث مكررات.

اشتملت الدراسة على ٤٠ معاملة تمثل التوافقات بين مستويات العاملين تحت الدراسة وهما مسافات الزراعة {٢٠×٤سم (١٧٠٠٠ نبات للفدان)، ٢٠×٥سم(١٤٠٠٠ نبات للفدان)، ٢٠×٤سم (١٥٠٠٠ نبات للفدان) و ٢٠×٥سم (٢٠٠٠ انبات للفدان)} و زعت على الشرائح الرئيسية وعشر معاملات لمكافحة الحشائش وهي (الجيساجارد، فيوزيليد سوبر، جيساجار د/فيوزيليد سوبر، ستومب، ستومب/سيلكت سوبر، سيلكت سوبر، متومب/عزيق، عزيق مرتين، كنترول، وإزالة الحشائش طوال الموسم) وزعت على الشرائح الأفقية.

أظهرت النتائج أن زيادة الكثافات النباتية أدت إلى نقص جو هرى فى الوزن الغض والجاف للحشائش العريضة والضيقة الأوراق والعدد والوزن الجاف للحشائش الكلية بعد ٢٠ يوماً من الزراعة. وقد أدت الزراعة على مسافات ضيقة بين نباتات فول الصويا إلى انخفاض بلغ مرتاب ٢٦,٦٢% بالموسم الأول و ٢٢,٩٠ % بالموسم الثانى فى الوزن الجاف للحشائش الكلية ، وزيادة فى نمو المحصول. كما سجلت الزراعة بإستخدام ١٧٥ ألف نبات للفدان أعلى محصول حبوب بالمقارنة بزراعة ١٢٠ ألف نبات للفدان. وسجلت صفات عدد القرون لكل نبات ، وعدد البذور لكل قرن ، وزن قرون لكل نبات للفول الصويا عند الزراعة ١٢٠ ألف نبات للفدان أعلى محافي مقارنة بالكثافات الأخرى.

جميع معاملات الحشائش أدت إلى نقص الوزن الغض للحشائش العريضة والضيقة الأوراق وأعداد والوزن الجاف للحشائش الكلية مقارنة بمعاملة الكنترول. وكانت نسبة النقص في محصول بذور فول الصويا في معاملة الكنترول (٣,٥ ، ٣,٣ طن حشائش للفدان) بمقدار ٤٣,١٨% بالموسم الأول ، ٤٢,٦٩ % بالموسم الثاني مقارنة بمعاملة إزالة الحشائش طول الموسم (٠,٠ طن حشائش للفدان).

إز الة الحشائش طوال الموسم أو مكافحة الحشائش بإستخدام مبيد ستومب مع عزقة واحدة بعد ٣٠ يوماً من الزراعة أعطت كفاءة عالية في تقليل أعداد ووزن الحشائش الجاف وزيادة في محصول بذور فول الصويا بنسبة ٧٥,٩٨،٧١,١٦ بالموسم الأول ٧٠,٢٣، ٧٤,٤٧ % بالموسم الثاني على التوالي مقارنة بمعاملة الكنترول (بدون مكافحة الحشائش). النسبة المئوية للبروتين والزيت لبذور الفول نقصت بنسبة (١٠,٥٦ ، ١٠,٦٠%) و (١٨,٢٣، ٥، ١٨,٠٥%) خلال الموسمين على التوالي نتيجة لتداخل الحشائش.

أحدث التداخل بين الكثافة النباتية بزراعة ١٧٥ ألف نبات للفدان وإزالة الحشائش طوال الموسم (معاملة ١٠) وكذلك تطبيق مبيد ستومب مع عزقة واحدة (معاملة ٧) أعلى كفاءة في مكافحة الحشائش وصلت ٧٨,٩١% بالموسم الأول ، ٨١,٠٢ % بالموسم الثاني .